1,502 research outputs found
Stirling material technology
The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A materials research and technology program identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818, NASAUT 4G-A1, and NASACC-1 as candidate replacements for the cobalt containing alloys used in current prototype engines. It is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. Results of research that lead to this conclusion are presented
The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for SR measurements on a continuous-wave beam
We report on the design and commissioning of a new spectrometer for muon-spin
relaxation/rotation studies installed at the Swiss Muon Source (SS) of the
Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially
a new design and replaces the old general-purpose surface-muon instrument (GPS)
which has been for long the workhorse of the SR user facility at PSI. By
making use of muon and positron detectors made of plastic scintillators read
out by silicon photomultipliers (SiPMs), a time resolution of the complete
instrument of about 160 ps (standard deviation) could be achieved. In addition,
the absence of light guides, which are needed in traditionally built SR
instrument to deliver the scintillation light to photomultiplier tubes located
outside magnetic fields applied, allowed us to design a compact instrument with
a detector set covering an increased solid angle compared to the old GPS.Comment: 11 pages, 11 figure
Internal erosion of granular materials – Identification of erodible fine particles as a basis for numerical calculations
In geohydromechanics internal erosion is a process which is still hardly to be quantified both spatially as well as temporally. The transport of fine particles, which is caused by increased hydraulic gradients, is influenced by the pore structure of the coarse grained fabric. The microstructural information of the pore constriction size distribution (CSD) of the solid skeleton has therefore to be taken into account when internal erosion is analyzed either analytically or numerically. The CSD geometrically defines the amount of fine particles, which potentially can be eroded away for a given hydraulic force. The contribution introduces experimental and numerical calculations which aim at the quantification of the amount of erodible fines. Based on this approach a multiphase continuum-based numerical model is used to back calculate the process of internal erosion for one material of the well-known experimental investigation of Skempton & Brogan (1994)[1]
Energy Efficient and Reliable ARQ Scheme (ER-ACK) for Mission Critical M2M/IoT Services
Wireless sensor networks (WSNs) are the main infrastructure for machine to machine (M2M) and Internet of thing (IoT). Since various sophisticated M2M/IoT services have their own quality-of-service (QoS) requirements, reliable data transmission in WSNs is becoming more important. However, WSNs have strict constraints on resources due to the crowded wireless frequency, which results in high collision probability. Therefore a more efficient data delivering scheme that minimizes both the transmission delay and energy consumption is required. This paper proposes energy efficient and reliable data transmission ARQ scheme, called energy efficient and reliable ACK (ER-ACK), to minimize transmission delay and energy consumption at the same time. The proposed scheme has three aspects of advantages compared to the legacy ARQ schemes such as ACK, NACK and implicit-ACK (I-ACK). It consumes smaller energy than ACK, has smaller transmission delay than NACK, and prevents the duplicated retransmission problem of I-ACK. In addition, resource considered reliability (RCR) is suggested to quantify the improvement of the proposed scheme, and mathematical analysis of the transmission delay and energy consumption are also presented. The simulation results show that the ER-ACK scheme achieves high RCR by significantly reducing transmission delay and energy consumption
An improved ontological representation of dendritic cells as a paradigm for all cell types
The Cell Ontology (CL) is designed to provide a standardized representation of cell types for data annotation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL’s utility for cross-species data integration. To address this problem, we developed a method for the ontological representation of cells and applied this method to develop a dendritic cell ontology (DC-CL). DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources.
104. Barry Smith, “Toward a Realistic Science of Environments”, Ecological Psychology, 2009, 21 (2), April-June, 121-130.
Abstract: The perceptual psychologist J. J. Gibson embraces a radically externalistic view of mind and action. We have, for Gibson, not a Cartesian mind or soul, with its interior theater of contents and the consequent problem of explaining how this mind or soul and its psychological environment can succeed in grasping physical objects external to itself. Rather, we have a perceiving, acting organism, whose perceptions and actions are always already tuned to the parts and moments, the things and surfaces, of its external environment. We describe how on this basis Gibson sought to develop a realist science of environments which will be ‘consistent with physics, mechanics, optics, acoustics, and chemistry’
Close proximity of FeSe to a magnetic quantum critical point as revealed by high-resolution SR measurements
A nematic transition preceding a long-range spin density wave
antiferromagnetic phase is a common feature of many Fe based superconductors.
However, in the FeSe system with a nematic transition at 90
K no evidence for long-range static magnetism down to very low temperature was
found. The lack of magnetism is a challenge for the theoretical description of
FeSe. Here, we investigated high-quality single crystals of FeSe using
high-field (up to 9.5 Tesla) muon spin rotation (SR) measurements. The
SR Knight shift and the bulk susceptibility linearly scale at high
temperatures but deviate from this behavior around K, where the
Knight shift exhibits a kink. This behavior hints to an essential change of the
electronic and/or magnetic properties crossing the region near . In the
temperature range the muon spin
depolarization rate follows a critical behavior . The
observed non-Fermi liquid behavior with a cutoff at indicates that FeSe
is in the vicinity to a antiferromagnetic quantum critical point. Our analysis
is suggestive for triggered by the Lifshitz transition.Comment: 15 pages, 16 figure
- …
