2,334 research outputs found

    Counts and Sizes of Galaxies in the Hubble Deep Field - South: Implications for the Next Generation Space Telescope

    Full text link
    Science objectives for the Next Generation Space Telescope (NGST) include a large component of galaxy surveys, both imaging and spectroscopy. The Hubble Deep Field datasets include the deepest observations ever made in the ultraviolet, optical and near infrared, reaching depths comparable to that expected for NGST spectroscopy. We present the source counts, galaxy sizes and isophotal filling factors of the HDF-South images. The observed integrated galaxy counts reach >500 galaxies per square arcminute at AB<30. We extend these counts to faint levels in the infrared using models. The trend previously seen that fainter galaxies are smaller, continues to AB=29 in the high resolution HDF-S STIS image, where galaxies have a typical half-light radius of 0.1 arcseconds. Extensive Monte Carlo simulations show that the small measured sizes are not due to selection effects until >29mag. Using the HDF-S NICMOS image, we show that galaxies are smaller in the near infrared than they are in the optical. We analyze the isophotal filling factor of the HDF-S STIS image, and show that this image is mostly empty sky even at the limits of galaxy detection, a conclusion we expect to hold true for NGST spectroscopy. At the surface brightness limits expected for NGST imaging, however, about a quarter of the sky is occupied by the outer isophotes of AB<30 galaxies. We discuss the implications of these data on several design concepts of the NGST near-infrared spectrograph. We compare the effects of resolution and the confusion limit of various designs, as well as the multiplexing advantages of either multi-object or full-field spectroscopy. We argue that the optimal choice for NGST spectroscopy of high redshift galaxies is a multi-object spectrograph (MOS) with target selection by a micro electro mechanical system (MEMS) device.Comment: 27 pages including 10 figures, accepted for publication in the Astronomical Journal, June 2000, abridged abstrac

    Asymmetry of jets, lobe size and spectral index in radio galaxies and quasars

    Get PDF
    We investigate the correlations between spectral index, jet side and extent of the radio lobes for a sample of nearby FRII radio galaxies. In Dennett-Thorpe et al. (1997) we studied a sample of quasars and found that the high surface brightness regions had flatter spectra on the jet side (explicable as a result of Doppler beaming) whilst the extended regions had spectral asymmetries dependent on lobe length. Unified schemes predict that asymmetries due to beaming will be much smaller in narrow-line radio galaxies than in quasars: we therefore investigate in a similar manner, a sample of radio galaxies with detected jets. We find that spectral asymmetries in these objects are uncorrelated with jet sidedness at all brightness levels, but depend on relative lobe volume. Our results are not in conflict with unified schemes, but suggest that the differences between the two samples are due primarily to power or redshift, rather than to orientation. We also show directly that hotspot spectra steepen as a function of radio power or redshift. Whilst a shift in observed frequency due to the redshift may account for some of the steepening, it cannot account for all of it, and a dependence on radio power is required.Comment: accepted for publication in MNRAS, 10 pages; typos/minor correctio

    Interactions of a Light Hypersonic Jet with a Non-Uniform Interstellar Medium

    Full text link
    We present three dimensional simulations of the interaction of a light hypersonic jet with an inhomogeneous thermal and turbulently supported disk in an elliptical galaxy. We model the jet as a light, supersonic non-relativistic flow with parameters selected to be consistent with a relativistic jet with kinetic power just above the FR1/FR2 break. We identify four generic phases in the evolution of such a jet with the inhomogeneous interstellar medium: 1) an initial ``flood and channel'' phase, where progress is characterized by high pressure gas finding changing weak points in the ISM, flowing through channels that form and re-form over time, 2) a spherical, energy-driven bubble phase, were the bubble is larger than the disk scale, but the jet remains fully disrupted close to the nucleus, 3) a rapid, jet break--out phase the where jet breaks free of the last dense clouds, becomes collimated and pierces the spherical bubble, and 4) a classical phase, the jet propagates in a momentum-dominated fashion leading to the classical jet + cocoon + bow-shock structure. Mass transport in the simulations is investigated, and we propose a model for the morphology and component proper motions in the well-studied Compact Symmetric Object 4C31.04.Comment: 66 pages, 22 figures, PDFLaTeX, aastex macros, graphicx and amssymb packages, Accepted, to be published 2007 ApJ

    Combinatorial functions of two chimeric antibodies directed to human CD4 and one directed to the a-chain of the human interleukin-2 receptor

    Get PDF
    The general feasibility of chimerization of monoclonal antibodies (mAbs) has already been shown for a large number of them. In order to evaluate in vitro parameters relevant to immunosuppressive therapy, we have chimerized and synthesized two anti-CD4 mAbs recognizing two different epitopes on the human T-lymphocyte antigen, CD4. The chimerized mAbs are produced at levels corresponding to those of the original hybridoma cell lines. With respect to activation of human complement, the individual Abs are negative; however, when used in combination, complement activation was performed. When applied in combination, they were found to modulate the CD4 antigen, whereas the individual mAb do not display this property. Individually they mediate an up to 60% inhibition of the mixed lymphocyte reaction (MLR). However, by combination of an anti-CD4 mAb with one directed against the a-chain of the human IL2 receptor, nearly 100% inhibition of the MLR was achieved, even with reduced dosage of the mAbs. Our data suggest that the combination of an anti-CD4 mAb and an anti-IL2Rcc chain mAb is more effective with respect to immunosuppression than each mAb by itself, indicating that this mAb cocktail could be a new strategy for immunosuppressive therapy

    Expansion of pinched hypersurfaces of the Euclidean and hyperbolic space by high powers of curvature

    Get PDF
    We prove convergence results for expanding curvature flows in the Euclidean and hyperbolic space. The flow speeds have the form FpF^{-p}, where p>1p>1 and FF is a positive, strictly monotone and 1-homogeneous curvature function. In particular this class includes the mean curvature F=HF=H. We prove that a certain initial pinching condition is preserved and the properly rescaled hypersurfaces converge smoothly to the unit sphere. We show that an example due to Andrews-McCoy-Zheng can be used to construct strictly convex initial hypersurfaces, for which the inverse mean curvature flow to the power p>1p>1 loses convexity, justifying the necessity to impose a certain pinching condition on the initial hypersurface.Comment: 18 pages. We included an example for the loss of convexity and pinching. In the third version we dropped the concavity assumption on F. Comments are welcom

    Aerosol chemical composition in Asian continental outflow during the TRACE-P campaign: Comparison with PEM-West B

    Get PDF
    Aerosol associated soluble ions and the radionuclide tracers 7Be and 210Pb were quantified in 414 filter samples collected in spring 2001 from the DC-8 during the Transport and Chemical Evolution over the Pacific (TRACE-P) campaign. Binning the data into near Asia (flights from Hong Kong and Japan) and remote Pacific (all other flights) revealed large enhancements of NO3−, SO4=, C2O4=, NH4+, K+, Mg2+, and Ca2+ near Asia. The boundary layer and lower troposphere were most strongly influenced by continental outflow, and the largest enhancements were seen in Ca2+ (a dust tracer) and NO3− (reflecting uptake of HNO3 onto the dust). Comparing the TRACE P near Asia bin with earlier results from the same region during PEM-West B (in 1994) shows at least twofold enhancements during TRACE P in most of the ions listed above. Calcium and NO3− were most enhanced in this comparison as well (more than sevenfold higher in the boundary layer and threefold higher in the lower troposphere). Independent estimation of Asian emissions of gaseous precursors of the aerosol-associated ions suggest only small changes between the two missions, and precipitation fields do not suggest any significant difference in the efficiency of the primary sink, precipitation scavenging. It thus appears that with the possible exception of dust, the enhancements of aerosol-associated species during TRACE P cannot be explained by stronger sources or weaker sinks. We argue that the enhancements largely reflect the fact that TRACE P focused on characterizing Asian outflow, and thus the DC-8 was more frequently flown into regions that were influenced by well-organized flow off the continent

    A General Formulation of the Source Confusion Statistics and Application to Infrared Galaxy Surveys

    Full text link
    Source confusion has been a long-standing problem in the astronomical history. In the previous formulation, sources are assumed to be distributed homogeneously on the sky. This fundamental assumption is not realistic in many applications. In this work, by making use of the point field theory, we derive general analytic formulae for the confusion problems with arbitrary distribution and correlation functions. As a typical example, we apply these new formulae to the source confusion of infrared galaxies. We first calculate the confusion statistics for power-law galaxy number counts as a test case. When the slope of differential number counts, \gamma, is steep, the confusion limits becomes much brighter and the probability distribution function (PDF) of the fluctuation field is strongly distorted. Then we estimate the PDF and confusion limits based on the realistic number count model for infrared galaxies. The gradual flattening of the slope of the source counts makes the clustering effect rather mild. Clustering effects result in an increase of the limiting flux density with \sim 10%. In this case, the peak probability of the PDF decreases up to \sim 15% and its tail becomes heavier.Comment: ApJ in press, 21 pages, 9 figures, using aastex.cls, emulateapj5.sty. Abstract abridge

    The Sunyaev-Zel'dovich Effect by Cocoons of Radio Galaxies

    Get PDF
    We estimate the deformation of the cosmic microwave background radiation by the hot region (``cocoon'') around a radio galaxy. A simple model is adopted for cocoon evolution while the jet is on, and a model of evolution is constructed after the jet is off. It is found that at low redshift the phase after the jet is off is longer than the lifetime of the jets. The Compton y-parameter generated by cocoons is calculated with a Press-Schechter number density evolution. The resultant value of y is of the same order as the COBE constraint. The Sunyaev-Zeldovich effect due to cocoons could therefore be a significant foreground source of small angular scale anisotropies in the cosmic microwave background radiation.Comment: Published version, 23 pages with 5 figure

    Shocks and sonic booms in the intracluster medium: X-ray shells and radio galaxy activity

    Get PDF
    Motivated by hydrodynamic simulations, we discuss the X-ray appearance of radio galaxies embedded in the intracluster medium (ICM) of a galaxy cluster. We distinguish three regimes. In the early life of a powerful source, the entire radio cocoon is expanding supersonically and hence drives a strong shock into the ICM. Eventually, the sides of the cocoon become subsonic and the ICM is disturbed by the sonic booms of the jet's working surface. In both of these regimes, X-ray observations would find an X-ray shell. In the strong shock regime, this shell will be hot and relatively thin. However, in the weak shock (sonic-boom) regime, the shell will be approximately the same temperature as the undisturbed ICM. If a cooling flow is present, the observed shell may even be cooler than the undisturbed ICM due to the lifting of cooler material into the shell from the inner (cooler) regions of the cluster. In the third and final regime, the cocoon has collapsed and no well-defined X-ray shell will be seen. We discuss ways of estimating the power and age of the source once its regime of behavior has been determined.Comment: 4 pages, submitted for publication in Astrophysical Journal. Full paper (including figure) can be obtained from http://rocinante.Colorado.EDU/~chris/papers/xray_hydro.p
    corecore