226 research outputs found
Streaking temporal double slit interference by an orthogonal two-color laser field
We investigate electron momentum distributions from single ionization of Ar
by two orthogonally polarized laser pulses of different color. The two-color
scheme is used to experimentally control the interference between electron wave
packets released at different times within one laser cycle. This intracycle
interference pattern is typically hard to resolve in an experiment. With the
two-color control scheme these features become the dominant contribution to the
electron momentum distribution. Furthermore the second color can be used for
streaking of the otherwise interfering wave packets establishing a which-way
marker. Our investigation shows that the visibility of the interference fringes
depends on the degree of the which-way information determined by the
controllable phase between the two pulses.Comment: submitted to PR
Photon Momentum Transfer in Single-Photon Double Ionization of Helium
We theoretically and experimentally investigate the photon momentum transfer in single-photon double ionization of helium at various large photon energies. We find that the forward shifts of the momenta along the light propagation of the two photoelectrons are roughly proportional to their fraction of the excess energy. The mean value of the forward momentum is about 8/5 of the electron energy divided by the speed of light. This holds for fast and slow electrons despite the fact that the energy sharing is highly asymmetric and the slow electron is known to be ejected by secondary processes of shake off and knockout rather than directly taking its energy from the photon. The biggest deviations from this rule are found for the region of equal energy sharing where the quasifree mechanism dominates double ionization
Observation of the Efimov state of the helium trimer
Quantum theory dictates that upon weakening the two-body interaction in a
three-body system, an infinite number of three-body bound states of a huge
spatial extent emerge just before these three-body states become unbound. Three
helium atoms have been predicted to form a molecular system that manifests this
peculiarity under natural conditions without artificial tuning of the
attraction between particles by an external field. Here we report experimental
observation of this long predicted but experimentally elusive Efimov state of
He by means of Coulomb explosion imaging. We show spatial images of
an Efimov state, confirming the predicted size and a typical structure where
two atoms are close to each other while the third is far away
- …