1,600 research outputs found

    Argon excimer emission from high-pressure microdischarges in metal capillaries

    Get PDF
    We report on argon excimer emission from high-pressure microdischarges formed inside metal capillaries with or without gas flow. Excimer emission intensity from a single tube increases linearly with gas pressure between 400 and 1000 Torr. Higher discharge current also results in initial intensity gains until gas heating causes saturation or intensity drop. Argon flow through the discharge intensifies emission perhaps by gas cooling. Emission intensity was found to be additive in prealigned dual microdischarges, suggesting that an array of microdischarges could produce a high-intensity excimer source

    Flexible electron field emitters fabricated using conducting ultrananocrystalline diamond pyramidal microtips on polynorbornene films

    Get PDF
    [[abstract]]High performance flexible field emitters made of aligned pyramidal shaped conducting ultrananocrystalline diamond (C-UNCD) microtips on polynorbornene substrates is demonstrated. Flexible C-UNCD pyramidal microtips show a low turn-on field of 1.80 V/μm with a field enhancement factor of 4580 and a high emission current density of 5.8 mA/cm2 (at an applied field of 4.20 V/μm) with life-time stability of 210 min. Such an enhancement in the field emission is due to the presence of sp 2-graphitic sheath with a nanowire-like diamond core. This high performance flexible C-UNCD field emitter is potentially useful for the fabrication of diverse, flexible electronic devices.[[booktype]]紙本[[booktype]]電子

    Gold ion implantation induced high conductivity and enhanced electron field emission properties in ultrananocrystalline diamond films

    Get PDF
    [[abstract]]We report high conductivity of 185 (Ω cm)−1 and superior electron field emission (EFE) properties, viz. low turn-on field of 4.88 V/μm with high EFE current density of 6.52 mA/cm2 at an applied field of 8.0 V/μm in ultrananocrystalline diamond (UNCD) films due to gold ion implantation. Transmission electron microscopy examinations reveal the presence of Au nanoparticles in films, which result in the induction of nanographitic phases in grain boundaries, forming conduction channels for electron transport. Highly conducting Au ion implanted UNCD films overwhelms that of nitrogen doped ones and will create a remarkable impact to diamond-based electronics.[[incitationindex]]SCI[[booktype]]紙本[[booktype]]電子

    High stability electron field emitters made of nanocrystalline diamond coated carbon nanotubes

    Get PDF
    [[abstract]]We report enhanced life-time stability for the electron field emitters prepared by coating nanocrystalline diamond (NCD) on carbon nanotubes (CNTs). Upon overcoming the problem of poor stability in CNTs, the NCD-CNTs exhibit excellent life-time stability of 250 min tested at different applied voltages of 600 and 900 V. In contrast, the life-time stability of CNTs is only 33 min even at relatively low voltage of 360 V and starts arcing at 400 V. Hence, the NCD-CNTs with improved life-time stability have great potential for the applications as cathodes in flat panel displays and microplasma display devices.[[booktype]]紙本[[booktype]]電子

    Survey of Fungi in Foodstuffs Stored in ASC Warehouses in Assam Region

    Get PDF
    The paper describes the isolation and characterisation of various fungi present in common foodstuffs stored in Army warehouses located in hot humid climate of Assam. Fungal contamination in the food commodities is highest in the rainy season and lowest in winter. Among the fungi isolated, Aspergillus niger, A. Fumigatus, Rhizopus nigricans and species of Mucor and Penicillium were found in all the samples analysed. Amongst these, members of Aspergillus dominated in the rainy season and Penicillium. Rhizopus nigricans was predominant in the winter months

    Portable Microleak-Detection System

    Get PDF
    The figure schematically depicts a portable microleak-detection system that has been built especially for use in testing hydrogen tanks made of polymer-matrix composite materials. (As used here, microleak signifies a leak that is too small to be detectable by the simple soap-bubble technique.) The system can also be used to test for microleaks in tanks that are made of other materials and that contain gases other than hydrogen. Results of calibration tests have shown that measurement errors are less than 10 percent for leak rates ranging from 0.3 to 200 cm3/min. Like some other microleak-detection systems, this system includes a vacuum pump and associated plumbing for sampling the leaking gas, and a mass spectrometer for analyzing the molecular constituents of the gas. The system includes a flexible vacuum chamber that can be attached to the outer surface of a tank or other object of interest that is to be tested for leakage (hereafter denoted, simply, the test object). The gas used in a test can be the gas or vapor (e.g., hydrogen in the original application) to be contained by the test object. Alternatively, following common practice in leak testing, helium can be used as a test gas. In either case, the mass spectrometer can be used to verify that the gas measured by the system is the test gas rather than a different gas and, hence, that the leak is indeed from the test object

    Spatially resolved simulation of a radio frequency driven micro atmospheric pressure plasma jet and its effluent

    Full text link
    Radio frequency driven plasma jets are frequently employed as efficient plasma sources for surface modification and other processes at atmospheric pressure. The radio-frequency driven micro atmospheric pressure plasma jet (μ\muAPPJ) is a particular variant of that concept whose geometry allows direct optical access. In this work, the characteristics of the μ\muAPPJ operated with a helium-oxygen mixture and its interaction with a helium environment are studied by numerical simulation. The density and temperature of the electrons, as well as the concentration of all reactive species are studied both in the jet itself and in its effluent. It is found that the effluent is essentially free of charge carriers but contains a substantial amount of activated oxygen (O, O3_3 and O2(1Δ)_2(^1\Delta)). The simulation results are verified by comparison with experimental data
    corecore