
Gold ion implantation induced high conductivity and enhanced electron field emission
properties in ultrananocrystalline diamond films
K. J. Sankaran, H. C. Chen, B. Sundaravel, C. Y. Lee, N. H. Tai, and I. N. Lin 

 
Citation: Applied Physics Letters 102, 061604 (2013); doi: 10.1063/1.4792744 
View online: http://dx.doi.org/10.1063/1.4792744 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/102/6?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Enhancing electrical conductivity and electron field emission properties of ultrananocrystalline diamond films by
copper ion implantation and annealing 
J. Appl. Phys. 115, 063701 (2014); 10.1063/1.4865325 
 
Direct observation of enhanced emission sites in nitrogen implanted hybrid structured ultrananocrystalline
diamond films 
J. Appl. Phys. 113, 054311 (2013); 10.1063/1.4790481 
 
Fabrication of free-standing highly conducting ultrananocrystalline diamond films with enhanced electron field
emission properties 
Appl. Phys. Lett. 101, 241604 (2012); 10.1063/1.4770513 
 
Microstructure evolution and the modification of the electron field emission properties of diamond films by
gigaelectron volt Au-ion irradiation 
AIP Advances 1, 042108 (2011); 10.1063/1.3651462 
 
Field emission enhancement in ultrananocrystalline diamond films by in situ heating during single or multienergy
ion implantation processes 
J. Appl. Phys. 105, 123710 (2009); 10.1063/1.3152790 

 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

163.13.36.183 On: Wed, 08 Oct 2014 03:18:11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225233227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1077920811/x01/AIP-PT/APL_ArticleDL_1014/AIP-2293_Chaos_Call_for_EIC_1640x440.jpg/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=K.+J.+Sankaran&option1=author
http://scitation.aip.org/search?value1=H.+C.+Chen&option1=author
http://scitation.aip.org/search?value1=B.+Sundaravel&option1=author
http://scitation.aip.org/search?value1=C.+Y.+Lee&option1=author
http://scitation.aip.org/search?value1=N.+H.+Tai&option1=author
http://scitation.aip.org/search?value1=I.+N.+Lin&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4792744
http://scitation.aip.org/content/aip/journal/apl/102/6?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/115/6/10.1063/1.4865325?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/115/6/10.1063/1.4865325?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/113/5/10.1063/1.4790481?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/113/5/10.1063/1.4790481?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/101/24/10.1063/1.4770513?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/101/24/10.1063/1.4770513?ver=pdfcov
http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3651462?ver=pdfcov
http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3651462?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/105/12/10.1063/1.3152790?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/105/12/10.1063/1.3152790?ver=pdfcov


Gold ion implantation induced high conductivity and enhanced electron
field emission properties in ultrananocrystalline diamond films

K. J. Sankaran,1 H. C. Chen,2 B. Sundaravel,3 C. Y. Lee,1 N. H. Tai,1,a) and I. N. Lin2,b)

1Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu 300, Taiwan
2Department of Physics, Tamkang University, Tamsui 251, Taiwan
3Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India

(Received 2 January 2013; accepted 6 February 2013; published online 15 February 2013)

We report high conductivity of 185 (X cm)�1 and superior electron field emission (EFE) properties,

viz. low turn-on field of 4.88 V/lm with high EFE current density of 6.52 mA/cm2 at an applied

field of 8.0 V/lm in ultrananocrystalline diamond (UNCD) films due to gold ion implantation.

Transmission electron microscopy examinations reveal the presence of Au nanoparticles in films,

which result in the induction of nanographitic phases in grain boundaries, forming conduction

channels for electron transport. Highly conducting Au ion implanted UNCD films overwhelms

that of nitrogen doped ones and will create a remarkable impact to diamond-based electronics.
VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792744]

Electron field emission (EFE) from carbon and related

materials has received great attention due to the immense

potential of this material to be employed as a cold cathode

material in flat panel displays and other electron field emit-

ting devices.1–3 Among field emitting materials, diamond is

known as a fascinating electronic material due to its nega-

tive electron affinity (NEA) surface.4–6 It is also known for

its unique physical and chemical properties and high ther-

mal conductivity that can promote devices with higher

efficiencies.7–9 Recently, ultrananocrystalline diamond

(UNCD) films have attracted significant attention from

researchers because of their unique granular structure.10

While the grains of UNCD films have sp3 character, the

grain boundaries have a mixture of sp2, sp3, hydrocarbon

and amorphous carbon, in which the sp2 character is pre-

dominant.11 The great promise that a diamond or an UNCD

film bears as a material for the fabrication of cold cathode

or other electron emitting devices requires the film to be

conductive. The incorporation of N2 into UNCD film’s

growth plasma can effectively improve the electrical con-

ductivity and the EFE properties of the films. This is

because N2 give rise to a conversion of an amorphous phase

to a graphite phase at the grain boundaries, increasing the

number of percolative conduction paths in the material.12–15

It indicates that the grain boundary conduction mechanism

is responsible for the observed increase in conductivity of

N2 doped UNCD films, while nano-sized diamond grains

give little contribution to the conductivity. Nevertheless, the

N2 doping temperature to create conductivity for UNCD

films is very high (about 800 �C).16,17

Ion implantation has long been used to modify the prop-

erties of materials through controlled doping with a variety

of dopants.18–20 The C-C and hydrocarbon bonds can be bro-

ken in the ion implantation process to form sp2 carbon. The

sp2 bonded carbon in diamond films can be thought of as

electrical conduction promoters, particularly if the sp2 bonds

form interconnected networks along, which electrons are

free to move. Recent reports showed that oxygen and phos-

phorous ion implantation on UNCD films provides n-type

conductivity, which is mediated by current paths supplied to

the films by the amorphous carbon (a-C) grain bounda-

ries.21,22 However, the electrical conductivity of a-C phases

contained in the grain boundaries of UNCD films is not suffi-

ciently high and, therefore, limits the EFE properties attain-

able for UNCD films.23

Here, we report the positive effect of Au ion implanta-

tion to enhance the conductivity and the EFE properties of

UNCD films. The modifications to the microstructure of

these films due to Au ion implantation were investigated in

detail using transmission electron microscopy (TEM), and

the role played by the implanted Au ions to enhance the EFE

properties of conducting UNCD films is discussed.

The UNCD films with ultra-smooth surface characteris-

tics at nanoscale prepared for Au ion implantation were grown

on n-type silicon substrates by microwave plasma enhanced

chemical vapor deposition system (IPLAS, Cyrannus), using

Ar(99%)/CH4(1%) gas at 1200 W and 120 Torr. Prior to the

growth of UNCD films, the substrates were ultrasonicated for

45 min in methanol solution containing the mixture of dia-

mond nano-powder (about 4 nm in size) and Ti powder

(SIGMA-ALDRICH) (365 mesh) to facilitate the nucleation

process. The growth process was carried out at low substrate

temperature without any intentional heating of the substrate.

The substrate temperature was estimated to be around 475 �C
with a thermocouple attached to the substrate holder. The

films were grown for 240 min to reach a thickness of 650 nm,

which was confirmed from the cross-sectional field emission

scanning electron microscopy (FESEM; JEOL 6500) image

(figure not shown). Gold ion implantation was performed at

room temperature with implantation energy of 500 keV, which

corresponds to a projected range of 80.3 6 8.6 nm as given by

SRIM2003.24 The ion dosages are varied from 1� 1015 to

1� 1017 ions/cm2 at an ion flux of 1.035� 1012 ions/cm2/s.

The pristine UNCD films are designated as Au0 and the films,

which have undergone implantations using ion doses of
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1� 1015, 1� 1016, 1� 1017 ions/cm2 are called Au15, Au16,

and Au17 samples, respectively.

The secondary ion mass spectroscopy (SIMS, Cameca-

I4f) depth profile shown in Fig. 1 suggests that Au is

implanted into UNCD to a depth of about 320 nm with peak

concentration located at around 160 nm beneath the surface.

The peak around 160 nm is almost twice of the projected

range of 500 keV Au ions, which can be attributed to radia-

tion enhanced diffusion of implanted ions.25,26 This profile

confirms that Au ions have been implanted in the UNCD

films. The Hall measurements were carried out in a van der

Pauw configuration (ECOPIA HMS-3000) to examine the

conducting behavior of the Au ion implanted UNCD films.

The electrical conductivity of the Au ion implanted UNCD

films are plotted in Fig. 2(a) as solid squares. The Au0 films

are too resistive to be measured using the van der Pauw con-

figuration. Interestingly, the electrical conductivity of Au ion

implanted UNCD films increases monotonously with increas-

ing ion dosage, from 0.03 (X cm)�1 (carrier concentration of

n¼ 2.07� 1015 cm�2 and mobility of l¼ 1.2� 102 cm2/V s)

for Au15 films to about 185 (X cm)�1 (n¼ 5.50� 1020 cm�2

and l¼ 8.5� 102 cm2/V s) for Au17 films. The obtained

electrical conductivity and carrier concentration values of

Au17 films are comparable with those of high temperature

(700 �C) grown nitrogen doped UNCD films14,15 and are

superior to that of the phosphorous and oxygen ion implanted

UNCD films21,22 (see, Table I).

The EFE characteristics of the samples were measured

in an electrical field using a parallel plate configuration,

where a molybdenum rod with a diameter of 2 mm was used

as anode. The current density versus electrical field (Je-E)

characteristics was acquired using a Keithley 237 electrome-

ter. The EFE characteristics of materials were explained

using the Fowler Nordheim (FN) theory,27 as shown in

Fig. 2(b), where the EFE properties of the Au0 films were

included as curve I to facilitate the comparison. The turn-on

field (E0) is designated as the interception of the straight

lines extrapolated from the low field and the high field seg-

ments of the FN plots [inset of Fig. 2(b)], viz. log(Je/E
2)-1/E.

The Au0 films exhibit the largest E0 of 19.33 V/lm with the

lowest Je of 1.03 mA/cm2 at an applied field of 33.5 V/lm

[curve I, Fig. 2(b)]. The E0 value decreases consistently with

the dosage of Au ion implantation [open circles, Fig. 2(a)].

The Au17 films show the best EFE characteristics, i.e., the

lowest E0 of 4.88 V/lm and the highest Je of 6.52 mA/cm2 at

an applied field of 8.0 V/lm [curve IV, Fig. 2(b)]. The EFE

properties of Au17 films are better than those of conducting

UNCD films ever reported (see, Table I).

The implantation of Au ions (1� 1017 ions/cm2) induces

dramatic changes in the surface microstructure of the UNCD

films as a featureless surface morphology for Au17 films

from a equi-axed ultra-small granular structure of Au0 films,

as shown in Figs. 3(a) and 3(b), respectively. The energy dis-

persive X-ray spectroscopy (EDX) spectrum corresponding

to the FESEM image of Au17 films [inset I, Fig. 3(a)] clearly

shows the Au peak indicating Au presence in the films,

whereas the spectrum corresponding to the Au0 films shows

the presence of C and Si only [inset I, Fig. 3(b)]. The bond-

ing character of different types of carbon in the UNCD films

FIG. 1. SIMS depth profiles of C, C2, CH, Au, Si, and O species in Au17

films.

FIG. 2. (a) Variation in the electrical conductivity (solid squares) and turn-

on field (open circles) and (b) the electron field emission properties of

UNCD films with varying Au ion dose. (The pristine UNCD film is desig-

nated as Au0).

TABLE I. Comparison on the electrical conductivity measured and turn-on

field of electron field emission for the conducting UNCD films.

Materials

Electrical

conductivity

(X cm)�1

Turn-on

field

(V/lm) References

N2 doped UNCD 200 6.13 14 and 15

O2 ion implanted UNCD 33.3 … 21

P ion implanted UNCD 0.09 … 22

Au ion implanted UNCD 185 4.88 This study

061604-2 Sankaran et al. Appl. Phys. Lett. 102, 061604 (2013)
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is characterized by Raman spectroscopy [Lab Raman

HR800, Jobin Yvon; k¼ 632 nm, inset II, Figs. 3(a) and

3(b)]. The inset II in Fig. 3(b) shows the visible-Raman spec-

trum of Au0 films that is deconvoluted using the multi-peak

Lorentzian fitting method. The spectrum contains the

�1-band (1163 cm�1) and the �3-band (1478 cm�1) resonance

peaks, which correspond to trans-polyacetylene at the grain

boundaries,28,29 and the D-band (1333 cm�1) and the G-band

(1538 cm�1) resonance peaks, which correspond to disor-

dered carbon.30,31 The sharp peak at 1332 cm�1, which is

commonly observed for microcrystalline diamond films, is

not observed for the Au0 films because visible-Raman

is more sensitive to sp2 bonded carbons, as compared to the

sp3 bonds.10 The Raman spectrum is markedly altered by the

Au ion implantation [inset II, Fig. 3(a)]. The higher inten-

sities of D (1344 cm�1) and G peaks (1542 cm�1) indicate

amorphization and graphitization types, respectively, of tran-

sitions in the UNCD films due to Au ion implantation.18 A

shoulder peak (G*) near 1600 cm�1 possibly arises from the

nanocrystalline graphitic content in the films.31 The G-band

resonance peak shifts to the wavenumber higher than that of

the conventional graphite peaks (1538 cm�1), confirming the

formation of nanographite.

To elucidate how highly conducting UNCD materials are

formed due to Au ion implantation, the microstructure of the

Au17 films were investigated using TEM (JEOL-2100F,

200 eV). Fig. 4(a) shows the typical TEM image of Au17

films. Selective area electron diffraction (SAED) pattern

shown in the inset of Fig. 4(a) illustrates that, besides the

diffraction rings corresponding to the (111)D, (220)D, and

(311)D lattice planes of diamond, there is a presence of an

extra diffraction ring corresponding to Au material. Such an

observation indicates that these regions contain abundant

nanosized Au particles uniformly distributed among the dia-

mond grains. This observation is in accord with the FESEM-

EDX elemental analysis results [inset I, Fig. 3(a)]. There also

exist some graphitic (or a-C) phases in these films that is veri-

fied by the prominent diffused ring in the center of this SAED.

More detailed investigations were carried out on the

Au17 films by high resolution TEM studies for the identifica-

tion of different phase constituents. Fig. 4(b) shows the

structure image for Au17 films corresponding to region A in

Fig. 4(a). Fourier transformed (FT) image of the whole struc-

ture image (FT0) shows a spotted diffraction pattern arranged

in ring, suggesting of nano-sized nature of the diamond (D)

and the gold (Au) phases. The diffused diffraction ring

located at the center of FT image corresponds to graphitic

(G) phase. The existence of diamond (D) and gold (Au)

phases are highlighted by regions 1 and 2, respectively,

which are identified by the FT images FT1 and FT2, respec-

tively. The presence of graphitic phases in the grain bounda-

ries, highlighted by the region 3, is confirmed by the FT

FIG. 3. FESEM images of UNCD surfaces with inset I show the EDX spec-

trum for the elemental composition of the corresponding FESEM image and

the inset II shows the Raman spectrum of (a) Au17 and (b) Au0 films.

FIG. 4. (a) TEM micrograph with corresponding SAED pattern shown as

inset and (b) high resolution TEM structure image corresponding to region

A in (a). The FT image corresponding to whole structure image is shown as

FT0 and the FT images of the selected regions marked as 1–3 are shown as

insets the FT1–FT3 images, respectively.
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image FT3. On the basis of TEM investigations for the Au17

film, it is noticed that Au ion implantation induces the pres-

ence of nanographitic phases, in conjunction with the forma-

tion of Au nanoparticles.

Previous reports revealed that the grain boundary phases

(a-C and graphite) coexist among the diamond grains of the

UNCD films are the authentic factors for the enhancement in

electrical conductivity and EFE properties of UNCD

films.15,23,32 The same conduction mechanism may be

applied to account for the improved conductivity due to Au

ion implantation. In this work, the Au ion implantation bene-

ficially consequences in the formation of Au nanoparticles

on the UNCD films that induces nanographitic phases in the

films. Such observations are in concordance with our con-

duction mechanism that the electrons are transported easily

through the graphitic phases as well as through the conduc-

tion channels of the diamond grains to the emitting surface

and are then emitted to vacuum without any difficulty as the

diamond surfaces are NEA in nature.5,6 Consequently, the

formations of Au nanoparticles and nanographitic phases

exist among the diamond grains of UNCD films due to Au

ion implantation are the actual factors for the enhanced EFE

properties of the Au17 films.

In summary, a possible way of fabricating high field emit-

ting conducting UNCD films due to Au ion implantation is

demonstrated. The Au17 films are highly conducting as com-

pared to Au0 films. The Au0 films show comparatively inferior

EFE properties that are ascribed to the a-C phases formed in

the boundaries of the diamond grains, which hinders the trans-

portation of electrons. In the case of the Au17 films, the forma-

tions of Au nanoparticles and the introduction of nanographitic

phases among the diamond grains advance the conducting

nature of the films, which are possibly the prime reasons for the

enhanced EFE properties of the Au17 films. The highly con-

ducting Au ion implanted UNCD films with enhanced EFE

characteristics may open up a pathway for the invention of

high-definition flat panel displays or plasma devices.
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