187 research outputs found

    Effects of aluminium chloride on some essential elements in pregnant rats and their offspring

    Get PDF
    Le but de notre étude est d’établir une relation de causalité entre l’injection intrapéritonéale d’AlCl3 et les variations plasmatiques et tissulaires des teneurs en calcium, magnésium, cuivre, zinc, phosphore et fer chez les rates gestantes et leurs foetus. Les rates gestantes sont injectées du 9ème au 13ème jour de la gestation par différentes doses d’AlCl3 (50, 100 et 200 mg/kg.j). Les éléments essentiels sont analysés dans le sang, les reins, le foie et l’intestin des animaux par spectrophotométrie d’absorption atomique. Les résultats montrent, après traitement par AlCl3, une augmentation des concentrations en calcium, fer et phosphore hépatique, aussi bien qu’en fer et phosphore au niveau rénal, et une diminution des concentrations en magnésium rénal et intestinal, en zinc hépatique, en cuivre hépatique et rénal, et en fer intestinal chez les rates gestantes et surtout pour les fortes doses. On a aussi noté une augmentation des concentrations en calcium, en phosphore et en zinc dans le plasma des rates gestantes et une diminution dans la concentration en magnésium dans le plasma des rates gestantes et leurs foetus pour les doses élevées d’AlCl3. Ces résultats prouvent que le passage de l’aluminium aux foetus suite au traitement des mères cause des perturbations dans le métabolisme des éléments essentiels

    Endothelin-1 enhances fibrogenic gene expression, but does not promote DNA synthesis or apoptosis in hepatic stellate cells

    Get PDF
    BACKGROUND: In liver injury, the pool of hepatic stellate cell (HSC) increases and produces extracellular matrix proteins, decreasing during the resolution of fibrosis. The profibrogenic role of endothelin-1 (ET-1) in liver fibrosis remains disputed. We therefore studied the effect of ET-1 on proliferation, apoptosis and profibrogenic gene expression of HSCs. RESULTS: First passage HSC predominantly expressed endothelin A receptor (ETAR) mRNA and 4th passage HSC predominantly expressed the endothelin B receptor (ETBR) mRNA. ET-1 had no effect on DNA synthesis in 1st passage HSC, but reduced DNA synthesis in 4th passage HSC by more than 50%. Inhibition of proliferation by endothelin-1 was abrogated by ETBR specific antagonist BQ788, indicating a prominent role of ETBR in growth inhibition. ET-1 did not prevent apoptosis induced by serum deprivation or Fas ligand in 1st or 4th passage HSC. However, ET-1 increased procollagen α1(I), transforming growth factor β-1 and matrix metalloproteinase (MMP)-2 mRNA transcripts in a concentration-dependent manner in 1st, but not in 4th passage HSC. Profibrogenic gene expression was abrogated by ETAR antagonist BQ123. Both BQ123 and BQ788 attenuated the increase of MMP-2 expression by ET-1. CONCLUSION: We show that ET-1 stimulates fibrogenic gene expression for 1st passage HSC and it inhibits HSC proliferation for 4th passage HSC. These data indicate the profibrogenic and antifibrogenic action of ET-1 for HSC are involved in the process of liver fibrosis

    Approaches in Sustainable, Biobased Multilayer Packaging Solutions

    Get PDF
    The depletion of fossil resources and the growing demand for plastic waste reduction has put industries and academic researchers under pressure to develop increasingly sustainable packaging solutions that are both functional and circularly designed. In this review, we provide an overview of the fundamentals and recent advances in biobased packaging materials, including new materials and techniques for their modification as well as their end-of-life scenarios. We also discuss the composition and modification of biobased films and multilayer structures, with particular attention to readily available drop-in solutions, as well as coating techniques. Moreover, we discuss end-of-life factors, including sorting systems, detection methods, composting options, and recycling and upcycling possibilities. Finally, regulatory aspects are pointed out for each application scenario and end-of-life option. Moreover, we discuss the human factor in terms of consumer perception and acceptance of upcycling

    The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    Get PDF
    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed

    Irradiation leads to apoptosis of Kupffer cells by a Hsp27-dependant pathway followed by release of TNF-α

    Get PDF
    In a previous publication, we were able to show that irradiation of Kupffer cells, the liver resident macrophages, leads to an increased TNF-α concentration in the culture medium. The pathomechanisms underlying this phenomenon, however, remained to be elucidated. Here, we show that following irradiation of Kupffer cells, the apoptosis rate increased drastically within 48 h. At the same time, the total TNF-α concentration in cell lysates of Kupffer cells attached to the culture plate decreased. However, normalization of the TNF-α concentration with respect to cell number revealed that TNF-α concentration per attached cell remained constant during the observation period. Western blot analysis showed that heat shock protein 27 (Hsp27) is strongly downregulated and bax is upregulated in irradiated Kupffer cells as compared to sham-irradiated cells. Overexpression of Hsp27 in Kupffer cells was shown to prevent the effect of irradiation on bax expression, apoptosis and, at the same time, on increase of TNF-α concentration in the Kupffer cell medium. We conclude that irradiation of Kupffer cells leads to apoptosis because of downregulation of Hsp27 and consecutive upregulation of bax expression. Furthermore, we suggest that apoptosis of Kupffer cells leads to an increase of TNF-α concentration in the culture medium which may be due to cell death rather than active release or synthesis

    Validation of the Integrated Medical Model Using Historical Space Flight Data

    Get PDF
    The Integrated Medical Model (IMM) utilizes Monte Carlo methodologies to predict the occurrence of medical events, utilization of resources, and clinical outcomes during space flight. Real-world data may be used to demonstrate the accuracy of the model. For this analysis, IMM predictions were compared to data from historical shuttle missions, not yet included as model source input. Initial goodness of fit test-ing on International Space Station data suggests that the IMM may overestimate the number of occurrences for three of the 83 medical conditions in the model. The IMM did not underestimate the occurrence of any medical condition. Initial comparisons with shuttle data demonstrate the importance of understanding crew preference (i.e., preferred analgesic) for accurately predicting the utilization of re-sources. The initial analysis demonstrates the validity of the IMM for its intended use and highlights areas for improvement

    Validation of the NASA Integrated Medical Model: a Space Flight Medical Risk Prediction Tool

    Get PDF
    The Human Research Program funded the development of the Integrated Medical Model (IMM) to quantify the medical component of overall mission risk. The IMM uses Monte Carlo simulation methodology, incorporating space flight and ground medical data, to estimate the probability of mission medical outcomes and resource utilization. To determine the credibility of IMM output, the IMM project team completed two validation studies that compared IMM predicted output to observed medical events from a selection of Shuttle Transportation System (STS) and International Space Station (ISS) missions. The validation study results showed that the IMM underpredicted the occurrence of ~10% of the modeled medical conditions for the STS missions and overpredicted ~20% of the modeled medical conditions for the ISS missions. These findings imply that the strength of IMM predictions to inform decisions depends on simulated mission specifications including length. This discrepancy could result from medical recording differences between ISS and STS that possibly influence observed incidence rates, IMM combining all "mission type" data as constant occurrence rate or fixed proportion across both mission types, misspecification of symptoms to conditions, and gaps in the literature informing the model. Some of these issues will be alleviated by updating the IMM source data through incorporation of the observed validation data
    • …
    corecore