11,217 research outputs found

    The Schwinger Model on a circle: relation between Path Integral and Hamiltonian approaches

    Full text link
    We solve the massless Schwinger model exactly in Hamiltonian formalism on a circle. We construct physical states explicitly and discuss the role of the spectral flow and nonperturbative vacua. Different thermodynamical correlation functions are calculated and after performing the analytical continuation are compared with the corresponding expressions obtained for the Schwinger model on the torus in Euclidean Path Integral formalism obtained before.Comment: 40 page

    Keynote Address: Seeking a Right to Appointed Counsel in Civil Cases in Maryland

    Get PDF

    Keynote Address: Seeking a Right to Appointed Counsel in Civil Cases in Maryland

    Get PDF

    No news for Kerr-Schild fields

    Full text link
    Algebraically special fields with no gravitational radiation are described. Kerr-Schild fields, which include as a concrete case the Kinnersley photon rocket, form an important subclass of them.Comment: 4 pages, Revtex

    How Do Nonlinear Voids Affect Light Propagation ?

    Full text link
    Propagation of light in a clumpy universe is examined. As an inhomogeneous matter distribution, we take a spherical void surrounded by a dust shell where the ``lost mass'' in the void is compensated by the shell. We study how the angular-diameter distance behaves when such a structure exists. The angular-diameter distance is calculated by integrating the Raychaudhuri equation including the shear. An explicit expression for the junction condition for the massive thin shell is calculated. We apply these results to a dust shell embedded in a Friedmann universe and determine how the distance-redshift relation is modified compared with that in the purely Friedmann universe. We also study the distribution of distances in a universe filled with voids. We show that the void-filled universe gives a larger distance than the FRW universe by 5\sim 5% at z1z \sim 1 if the size of the void is 5\sim 5% of the Horizon radius.Comment: To appear in Prog. Theor. Phys. 10

    Quantum Mechanics of Extended Objects

    Get PDF
    We propose a quantum mechanics of extended objects that accounts for the finite extent of a particle defined via its Compton wavelength. The Hilbert space representation theory of such a quantum mechanics is presented and this representation is used to demonstrate the quantization of spacetime. The quantum mechanics of extended objects is then applied to two paradigm examples, namely, the fuzzy (extended object) harmonic oscillator and the Yukawa potential. In the second example, we theoretically predict the phenomenological coupling constant of the ω\omega meson, which mediates the short range and repulsive nucleon force, as well as the repulsive core radius.Comment: RevTex, 24 pages, 1 eps and 5 ps figures, format change

    Older Adults and Forgoing Cancer Screening

    Get PDF
    Although there is a growing recognition that older adults and those with extensive comorbid conditions undergo cancer screening too frequently, there is little information about patients’ perceptions regarding cessation of cancer screening. Information on older adults’ views of screening cessation would be helpful both for clinicians and for those designing interventions to reduce overscreening

    High-order gauge-invariant perturbations of a spherical spacetime

    Get PDF
    We complete the formulation of a general framework for the analysis of high-order nonspherical perturbations of a four-dimensional spherical spacetime by including a gauge-invariant description of the perturbations. We present a general algorithm to construct these invariants and provide explicit formulas for the case of second-order metric perturbations. We show that the well-known problem of lack of invariance for the first-order perturbations with l=0,1 propagates to increasing values of l for perturbations of higher order, owing to mode coupling. We also discuss in which circumstances it is possible to construct the invariants

    A note on the peeling theorem in higher dimensions

    Full text link
    We demonstrate the ``peeling property'' of the Weyl tensor in higher dimensions in the case of even dimensions (and with some additional assumptions), thereby providing a first step towards understanding of the general peeling behaviour of the Weyl tensor, and the asymptotic structure at null infinity, in higher dimensions.Comment: 5 pages, to appear in Class. Quantum Gra
    corecore