85,201 research outputs found

    Antiproton-Proton Channels in J/psi Decays

    Full text link
    The recent measurements by the BES Collaboration of J/psi decays into a photon and a proton-antiproton pair indicate a strong enhancement at the proton-antiproton threshold not observed in the decays into a neutral pion and a proton-antiproton pair. Is this enhancement due to a proton-antiproton quasi-bound state or a baryonium? A natural explanation follows from a traditional model of proton-antiproton interactions based on G-parity transformation. The observed proton-antiproton structure is due to a strong attraction in the 1S0 state, and possibly to a near-threshold quasi-bound state in the 11S0 wave.Comment: 6 pages, 5 figures. The antiproton-proton pair being in isospin one in the J/Psi decay into neutral pion-antiproton-proton, the antiproton-proton 1P1 and 3S1 waves have been replaced by the 31P1 and 33S1 ones and Figs. 1 and 2 have been replaced accordingly. Conclusions are unchanged. Most of the content of the paper is published in Phys. Rev. C72, 011001 (2005

    Hadronization Approach for a Quark-Gluon Plasma Formed in Relativistic Heavy Ion Collisions

    Full text link
    A transport model is developed to describe hadron emission from a strongly coupled quark-gluon plasma formed in relativistic heavy ion collisions. The quark-gluon plasma is controlled by ideal hydrodynamics, and the hadron motion is characterized by a transport equation with loss and gain terms. The two sets of equations are coupled to each other, and the hadronization hypersurface is determined by both the hydrodynamic evolution and the hadron emission. The model is applied to calculate the transverse momentum distributions of mesons and baryons, and most of the results agree well with the experimental data at RHIC.Comment: 16 pages, 24 figures. Version accepted by PR

    Critical exponents of the driven elastic string in a disordered medium

    Full text link
    We analyze the harmonic elastic string driven through a continuous random potential above the depinning threshold. The velocity exponent beta = 0.33(2) is calculated. We observe a crossover in the roughness exponent zeta from the critical value 1.26 to the asymptotic (large force) value of 0.5. We calculate directly the velocity correlation function and the corresponding correlation length exponent nu = 1.29(5), which obeys the scaling relation nu = 1/(2-zeta), and agrees with the finite-size-scaling exponent of fluctuations in the critical force. The velocity correlation function is non-universal at short distances.Comment: 4 pages, 3 figures. corrected references and typo

    Understanding the Frequency Distribution of Mechanically Stable Disk Packings

    Full text link
    Relative frequencies of mechanically stable (MS) packings of frictionless bidisperse disks are studied numerically in small systems. The packings are created by successively compressing or decompressing a system of soft purely repulsive disks, followed by energy minimization, until only infinitesimal particle overlaps remain. For systems of up to 14 particles most of the MS packings were generated. We find that the packings are not equally probable as has been assumed in recent thermodynamic descriptions of granular systems. Instead, the frequency distribution, averaged over each packing-fraction interval Δϕ\Delta \phi, grows exponentially with increasing ϕ\phi. Moreover, within each packing-fraction interval MS packings occur with frequencies fkf_k that differ by many orders of magnitude. Also, key features of the frequency distribution do not change when we significantly alter the packing-generation algorithm--for example frequent packings remain frequent and rare ones remain rare. These results indicate that the frequency distribution of MS packings is strongly influenced by geometrical properties of the multidimensional configuration space. By adding thermal fluctuations to a set of the MS packings, we were able to examine a number of local features of configuration space near each packing including the time required for a given packing to break to a distinct one, which enabled us to estimate the energy barriers that separate one packing from another. We found a positive correlation between the packing frequencies and the heights of the lowest energy barriers ϵ0\epsilon_0. We also examined displacement fluctuations away from the MS packings to correlate the size and shape of the local basins near each packing to the packing frequencies.Comment: 21 pages, 20 figures, 1 tabl

    Engineering multiple levels of specificity in an RNA viral vector

    Get PDF
    Synthetic molecular circuits could provide powerful therapeutic capabilities, but delivering them to specific cell types and controlling them remains challenging. An ideal "smart" viral delivery system would enable controlled release of viral vectors from "sender" cells, conditional entry into target cells based on cell-surface proteins, conditional replication specifically in target cells based on their intracellular protein content, and an evolutionarily robust system that allows viral elimination with drugs. Here, combining diverse technologies and components, including pseudotyping, engineered bridge proteins, degrons, and proteases, we demonstrate each of these control modes in a model system based on the rabies virus. This work shows how viral and protein engineering can enable delivery systems with multiple levels of control to maximize therapeutic specificity

    Robust H-infinity filtering for 2-D systems with intermittent measurements

    Get PDF
    This paper is concerned with the problem of robust H∞ filtering for uncertain two-dimensional (2-D) systems with intermittent measurements. The parameter uncertainty is assumed to be of polytopic type, and the measurements transmission is assumed to be imperfect, which is modeled by a stochastic variable satisfying the Bernoulli random binary distribution. Our attention is focused on the design of an H∞ filter such that the filtering error system is stochastically stable and preserves a guaranteed H∞ performance. This problem is solved in the parameter-dependent framework, which is much less conservative than the quadratic approach. By introducing some slack matrix variables, the coupling between the positive definite matrices and the system matrices is eliminated, which greatly facilitates the filter design procedure. The corresponding results are established in terms of linear matrix inequalities, which can be easily tested by using standard numerical software. An example is provided to show the effectiveness of the proposed approac
    corecore