108 research outputs found

    Grain Size and Texture of Cu2ZnSnS4 Thin Films Synthesized by Cosputtering Binary Sulfides and Annealing: Effects of Processing Conditions and Sodium

    Full text link
    We investigate the synthesis of kesterite Cu2ZnSnS4 (CZTS) polycrystalline thin films using cosputtering from binary sulfide targets followed by annealing in sulfur vapor at 500 {\deg}C to 650 {\deg}C. The films are the kesterite CZTS phase as indicated by x-ray diffraction, Raman scattering, and optical absorption measurements. The films exhibit (112) fiber texture and preferred low-angle and Sigma3 grain boundary populations which have been demonstrated to reduce recombination in Cu(In,Ga)Se2 and CdTe films. The grain growth kinetics are investigated as functions of temperature and the addition of Na. Significantly, lateral grain sizes above 1 um are demonstrated for samples grown on Na-free glass,demonstrating the feasibility for CZTS growth on substrates other than soda lime glass

    Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells

    Get PDF
    Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into Iďż˝, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead

    Anti-tumor necrosis factor-Α antibody treatment reduces pulmonary inflammation and methacholine hyper-responsiveness in a murine asthma model induced by house dust

    Full text link
    Background/Aims Recent studies documented that sensitization and exposure to cockroach allergens significantly increase children's asthma morbidity as well as severity, especially among inner city children. TNF-Α has been postulated to be a critical mediator directly contributing to the bronchopulmonary inflammation and airway hyper-responsiveness in asthma. This study investigated whether an anti-TNF-Α antibody would inhibit pulmonary inflammation and methacholine (Mch) hyper-responsiveness in a mouse model of asthma induced by a house dust extract containing both endotoxin and cockroach allergens. Methods A house dust sample was extracted with phosphate-buffered saline and then used for immunization and two additional pulmonary challenges of BALB/c mice. Mice were treated with an intravenous injection of anti-TNF-Α antibody or control antibody 1  h before each pulmonary challenge. Results In a kinetic study, TNF-Α levels within the bronchoalveolar lavage (BAL) fluid increased quickly peaking at 2 h while BAL levels of IL-4, IL-5, and IL-13 peaked at later time-points. Mch hyper-responsiveness was measured 24 h after the last challenge, and mice were killed 24 h later. TNF inhibition resulted in an augmentation of these Th2 cytokines. However, the allergic pulmonary inflammation was significantly reduced by anti-TNF-Α antibody treatment as demonstrated by a substantial reduction in the number of BAL eosinophils, lymphocytes, macrophages, and neutrophils compared with rat IgG-treated mice. Mch hyper-responsiveness was also significantly reduced in anti-TNF-Α antibody-treated mice and the pulmonary histology was also significantly improved. Inhibition of TNF significantly reduced eotaxin levels within the lung, suggesting a potential mechanism for the beneficial effects. These data indicate that anti-TNF-Α antibody can reduce the inflammation and pathophysiology of asthma in a murine model of asthma induced by a house dust extract.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73609/1/j.1365-2222.2005.02407.x.pd

    Role of TNFα in pulmonary pathophysiology

    Get PDF
    Tumor necrosis factor alpha (TNFα) is the most widely studied pleiotropic cytokine of the TNF superfamily. In pathophysiological conditions, generation of TNFα at high levels leads to the development of inflammatory responses that are hallmarks of many diseases. Of the various pulmonary diseases, TNFα is implicated in asthma, chronic bronchitis (CB), chronic obstructive pulmonary disease (COPD), acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In addition to its underlying role in the inflammatory events, there is increasing evidence for involvement of TNFα in the cytotoxicity. Thus, pharmacological agents that can either suppress the production of TNFα or block its biological actions may have potential therapeutic value against a wide variety of diseases. Despite some immunological side effects, anti-TNFα therapeutic strategies represent an important breakthrough in the treatment of inflammatory diseases and may have a role in pulmonary diseases characterized by inflammation and cell death

    Vue générale du Caire et Mosquée Sultan. [General view of Cairo at the Sultan's Mosque.]

    No full text
    front: "Vue generale du Caire et Mosquee Sultan." ; back: "UNION POSTALE UNIVERSELLE EGYPTE CARTE POSTALE : Au Carto-Sport, Max H. Rudmann, Le Caire."Aerial view of Sultan's Mosque, with Cairo in the backgroun

    Agricultural land use and biodiversity in the Alps : how cultural tradition and socioeconomically motivated changes are shaping grassland biodiversity in the Swiss Alps

    Get PDF
    Alpine grasslands are ecosystems with a great diversity of plant species. However, little is known about other levels of biodiversity, such as landscape diversity, diversity of biological interactions of plants with herbivores or fungal pathogens, and genetic diversity. We therefore explored natural and anthropogenic determinants of grassland biodiversity at several levels of biological integration, from the genetic to the landscape level in the Swiss Alps. Differences between cultural traditions (Romanic, Germanic, and Walser) turned out to still affect land use diversity and thus landscape diversity. Increasing land use diversity, in turn, increased plant species diversity per village. However, recent land use changes have reduced this diversity. Within grassland parcels, plant species diversity was higher on unfertilized mown grasslands than on fertilized or grazed ones. Most individual plants were affected by herbivores and fungal leaf pathogens, reflecting that parcels harbored a great diversity of herbivores and pathogens. However, as plant damage by herbivores and pathogens was not severe, conserving these biological interactions among plants is hardly compromising agricultural goals. A common-garden experiment revealed genetic differentiation of the important fodder grass Poa alpina between mown and grazed sites, suggesting adaptation. Per-village genetic diversity of Poa alpina was greater in villages with higher land use diversity, analogous to the higher plant species diversity there. Overall, landscape diversity and biodiversity within grassland parcels are currently declining. As this contradicts the intention of Swiss law and international agreements, financial incentives need to be re-allocated and should focus on promoting high biodiversity at the local and the landscape level. At the same time, this will benefit landscape attractiveness for tourists and help preserve a precious cultural heritage in the Swiss Alps

    Mechanisms of Entry Into the Central Nervous System by Neuroinvasive Pathogens

    No full text
    Background: The literature on neurological manifestations, cerebrospinal fluid analyses, and autopsies in patients with COVID-19 continues to grow. The proposed mechanisms for neurological disease in patients with COVID-19 include indirect processes such as inflammation, microvascular injury, and hypoxic-ischemic damage. An alternate hypothesis suggests direct viral entry of SARS-CoV-2 into the brain and cerebrospinal fluid, given varying reports regarding isolation of viral components from these anatomical sites. Evidence acquisition: PubMed, Google Scholar databases, and neuroanatomical textbooks were manually searched and reviewed. Results: We provide clinical concepts regarding the mechanisms of viral pathogen invasion in the central nervous system (CNS); advances in our mechanistic understanding of CNS invasion in well-known neurotropic pathogens can aid in understanding how viruses evolve strategies to enter brain parenchyma. We also present the structural components of CNS compartments that influence viral entry, focusing on hematogenous and transneuronal spread, and discuss this evidence as it relates to our understanding of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Conclusions: Although there is a paucity of data supporting direct viral entry of SARS-CoV-2 in humans, increasing our knowledge of the structural components of CNS compartments that block viral entry and pathways exploited by pathogens is fundamental to preparing clinicians and researchers for what to expect when a novel emerging virus with neurological symptoms establishes infection in the CNS, and how to design therapeutics to mitigate such an infection

    Electrical Properties of Heterojunction Cu(In,Ga)Se2 Superstrate Solar Cells

    No full text
    The electrical properties of heterojunctions between wide gap n-type oxides and the p-type semiconductor Cu(In,Ga)Sez have been studied. The investigated oxides were a bilayer of undoped and aluminium doped ZnO, and the commercially available transparent conducting oxides SnO2:F (FTO) and In2O3-SnO2 (ITO). The junction of CIGS with ZnO showed the characteristic of a pn-junction, the temperature dependence of the current-voltage characteristics suggests interface recombination as dominating transport mechanism. This junction is suitable for photovoltaic light conversion and for the development of solar cells in superstrate configuration. The junctions of CIGS with FTO and with IT0 showed poor rectifying behaviour and little or no response to illumination. The quasi-ohmic behaviour of these junctions was successfully used to replace the Molybdenum back contact with a transparent back contact in Cu(ln,Ga)Sez substrate solar cells
    • …
    corecore