3,097 research outputs found

    Post-traumatic glenohumeral cartilage lesions: a systematic review

    Full text link
    BACKGROUND: Any cartilage damage to the glenohumeral joint should be avoided, as these damages may result in osteoarthritis of the shoulder. To understand the pathomechanism leading to shoulder cartilage damage, we conducted a systematic review on the subject of articular cartilage lesions caused by traumas where non impression fracture of the subchondral bone is present. METHODS: PubMed (MEDLINE), ScienceDirect (EMBASE, BIOBASE, BIOSIS Previews) and the COCHRANE database of systematic reviews were systematically scanned using a defined search strategy to identify relevant articles in this field of research. First selection was done based on abstracts according to specific criteria, where the methodological quality in selected full text articles was assessed by two reviewers. Agreement between raters was investigated using percentage agreement and Cohen's Kappa statistic. The traumatic events were divided into two categories: 1) acute trauma which refers to any single impact situation which directly damages the articular cartilage, and 2) chronic trauma which means cartilage lesions due to overuse or disuse of the shoulder joint. RESULTS: The agreement on data quality between the two reviewers was 93% with a Kappa value of 0.79 indicating an agreement considered to be 'substantial'. It was found that acute trauma on the shoulder causes humeral articular cartilage to disrupt from the underlying bone. The pathomechanism is said to be due to compression or shearing, which can be caused by a sudden subluxation or dislocation. However, such impact lesions are rarely reported. In the case of chronic trauma glenohumeral cartilage degeneration is a result of overuse and is associated to other shoulder joint pathologies. In these latter cases it is the rotator cuff which is injured first. This can result in instability and consequent impingement which may progress to glenohumeral cartilage damage. CONCLUSION: The great majority of glenohumeral cartilage lesions without any bony lesions are the results of overuse. Glenohumeral cartilage lesions with an intact subchondral bone and caused by an acute trauma are either rare or overlooked. And at increased risk for such cartilage lesions are active sportsmen with high shoulder demand or athletes prone to shoulder injury

    Consistent alpha-cluster description of the 12C (0^+_2) resonance

    Full text link
    The near-threshold 12C (0^+_2) resonance provides unique possibility for fast helium burning in stars, as predicted by Hoyle to explain the observed abundance of elements in the Universe. Properties of this resonance are calculated within the framework of the alpha-cluster model whose two-body and three-body effective potentials are tuned to describe the alpha - alpha scattering data, the energies of the 0^+_1 and 0^+_2 states, and the 0^+_1-state root-mean-square radius. The extremely small width of the 0^+_2 state, the 0_2^+ to 0_1^+ monopole transition matrix element, and transition radius are found in remarkable agreement with the experimental data. The 0^+_2-state structure is described as a system of three alpha-particles oscillating between the ground-state-like configuration and the elongated chain configuration whose probability exceeds 0.9

    Physiological and Biomechanical Responses of Highly Trained Distance Runners to Lower-Body Positive Pressure Treadmill Running

    Get PDF
    Background: As a way to train at faster running speeds, add training volume, prevent injury, or rehabilitate after an injury, lower-body positive pressure treadmills (LBPPT) have become increasingly commonplace among athletes. However, there are conflicting evidence and a paucity of data describing the physiological and biomechanical responses to LBPPT running in highly trained or elite caliber runners at the running speeds they habitually train at, which are considerably faster than those of recreational runners. Furthermore, data is lacking regarding female runners’ responses to LBPPT running. Therefore, this study was designed to evaluate the physiological and biomechanical responses to LBPPT running in highly trained male and female distance runners. Methods: Fifteen highly trained distance runners (seven male; eight female) completed a single running test composed of 4 × 9-min interval series at fixed percentages of body weight ranging from 0 to 30% body weight support (BWS) in 10% increments on LBPPT. The first interval was always conducted at 0% BWS; thereafter, intervals at 10, 20, and 30% BWS were conducted in random order. Each interval consisted of three stages of 3 min each, at velocities of 14.5, 16.1, and 17.7 km·h−1 for men and 12.9, 14.5, and 16.1 km·h−1 for women. Expired gases, ventilation, breathing frequency, heart rate (HR), rating of perceived exertion (RPE), and stride characteristics were measured during each running speed and BWS. Results: Male and female runners had similar physiological and biomechanical responses to running on LBPPT. Increasing BWS increased stride length (p \u3c 0.02) and flight duration (p \u3c 0.01) and decreased stride rate (p \u3c 0.01) and contact time (p \u3c 0.01) in small-large magnitudes. There was a large attenuation of oxygen consumption (VO2) relative to BWS (p \u3c 0.001), while there were trivial-moderate reductions in respiratory exchange ratio, minute ventilation, and respiratory frequency (p \u3e 0.05), and small-large effects on HR and RPE (p \u3c 0.01). There were trivial-small differences in VE, respiratory frequency, HR, and RPE for a given VO2 across various BWS (p \u3e 0.05). Conclusions: The results indicate the male and female distance runners have similar physiological and biomechanical responses to LBPPT running. Overall, the biomechanical changes during LBPPT running all contributed to less metabolic cost and corresponding physiological changes. Keywords: AlterG, Lower-body positive pressure, Body weight support, Anti-gravity, Running, Stride characteristics, Physiological characteristics, Metabolic demand, Oxygen demand, Oxygen cos
    corecore