16,989 research outputs found

    Multi-Gigabit Wireless data transfer at 60 GHz

    Full text link
    In this paper we describe the status of the first prototype of the 60 GHz wireless Multi-gigabit data transfer topology currently under development at University of Heidelberg using IBM 130 nm SiGe HBT BiCMOS technology. The 60 GHz band is very suitable for high data rate and short distance applications as for example needed in the HEP experments. The wireless transceiver consist of a transmitter and a receiver. The transmitter includes an On-Off Keying (OOK) modulator, an Local Oscillator (LO), a Power Amplifier (PA) and a BandPass Filter (BPF). The receiver part is composed of a BandPass- Filter (BPF), a Low Noise Amplifier (LNA), a double balanced down-convert Gilbert mixer, a Local Oscillator (LO), then a BPF to remove the mixer introduced noise, an Intermediate Amplifier (IF), an On-Off Keying demodulator and a limiting amplifier. The first prototype would be able to handle a data-rate of about 3.5 Gbps over a link distance of 1 m. The first simulations of the LNA show that a Noise Figure (NF) of 5 dB, a power gain of 21 dB at 60 GHz with a 3 dB bandwidth of more than 20 GHz with a power consumption 11 mW are achieved. Simulations of the PA show an output referred compression point P1dB of 19.7 dB at 60 GHz.Comment: Proceedings of the WIT201

    High resolution Ge/Li/ spectrometer reduces rate-dependent distortions at high counting rates

    Get PDF
    Modified spectrometer system with a low-noise preamplifier reduces rate-dependent distortions at high counting rates, 25,000 counts per second. Pole-zero cancellation minimizes pulse undershoots due to multiple time constants, baseline restoration improves resolution and prevents spectral shifts

    Entropic particle transport: higher order corrections to the Fick-Jacobs diffusion equation

    Full text link
    Transport of point-size Brownian particles under the influence of a constant and uniform force field through a three-dimensional channel with smoothly varying periodic cross-section is investigated. Here, we employ an asymptotic analysis in the ratio between the difference of the widest and the most narrow constriction divided through the period length of the channel geometry. We demonstrate that the leading order term is equivalent to the Fick-Jacobs approximation. By use of the higher order corrections to the probability density we derive an expression for the spatially dependent diffusion coefficient D(x) which substitutes the constant diffusion coefficient present in the common Fick-Jacobs equation. In addition, we show that in the diffusion dominated regime the average transport velocity is obtained as the product of the zeroth-order Fick-Jacobs result and the expectation value of the spatially dependent diffusion coefficient . The analytic findings are corroborated with the precise numerical results of a finite element calculation of the Smoluchowski diffusive particle dynamics occurring in a reflection symmetric sinusoidal-shaped channel.Comment: 9 pages, 3 figure

    An inclusion result for dagger closure in certain section rings of abelian varieties

    Full text link
    We prove an inclusion result for graded dagger closure for primary ideals in symmetric section rings of abelian varieties over an algebraically closed field of arbitrary characteristic.Comment: 11 pages, v2: updated one reference, fixed 2 typos; final versio

    Correspondence between geometrical and differential definitions of the sine and cosine functions and connection with kinematics

    Full text link
    In classical physics, the familiar sine and cosine functions appear in two forms: (1) geometrical, in the treatment of vectors such as forces and velocities, and (2) differential, as solutions of oscillation and wave equations. These two forms correspond to two different definitions of trigonometric functions, one geometrical using right triangles and unit circles, and the other employing differential equations. Although the two definitions must be equivalent, this equivalence is not demonstrated in textbooks. In this manuscript, the equivalence between the geometrical and the differential definition is presented assuming no a priori knowledge of the properties of sine and cosine functions. We start with the usual length projections on the unit circle and use elementary geometry and elementary calculus to arrive to harmonic differential equations. This more general and abstract treatment not only reveals the equivalence of the two definitions but also provides an instructive perspective on circular and harmonic motion as studied in kinematics. This exercise can help develop an appreciation of abstract thinking in physics.Comment: 6 pages including 1 figur

    Radio-frequency operation of a double-island single-electron transistor

    Full text link
    We present results on a double-island single-electron transistor (DISET) operated at radio-frequency (rf) for fast and highly sensitive detection of charge motion in the solid state. Using an intuitive definition for the charge sensitivity, we compare a DISET to a conventional single-electron transistor (SET). We find that a DISET can be more sensitive than a SET for identical, minimum device resistances in the Coulomb blockade regime. This is of particular importance for rf operation where ideal impedance matching to 50 Ohm transmission lines is only possible for a limited range of device resistances. We report a charge sensitivity of 5.6E-6 e/sqrt(Hz) for a rf-DISET, together with a demonstration of single-shot detection of small (<=0.1e) charge signals on microsecond timescales.Comment: 6 pages, 6 figure
    • …
    corecore