301 research outputs found
Neutrinos and Nucleosynthesis in Supernova
The type II supernova is considered as a candidate site for the production of
heavy elements. The nucleosynthesis occurs in an intense neutrino flux, we
calculate the electron fraction in this environment.Comment: RevTex4 style, 3 pages including 1 figure. Presented at Mexican
School of Astrophysics 2002, Guanajuato, Mexico, 31 Jul - 7 Aug 2002. Final
version to appear in the Proceedings of IX Mexican Workshop on Particles and
Fields Physics Beyond the Standard Model, Colima Col. Mexico, November 17-22,
200
Detecting event-related recurrences by symbolic analysis: Applications to human language processing
Quasistationarity is ubiquitous in complex dynamical systems. In brain
dynamics there is ample evidence that event-related potentials reflect such
quasistationary states. In order to detect them from time series, several
segmentation techniques have been proposed. In this study we elaborate a recent
approach for detecting quasistationary states as recurrence domains by means of
recurrence analysis and subsequent symbolisation methods. As a result,
recurrence domains are obtained as partition cells that can be further aligned
and unified for different realisations. We address two pertinent problems of
contemporary recurrence analysis and present possible solutions for them.Comment: 24 pages, 6 figures. Draft version to appear in Proc Royal Soc
Movement Intention Is Better Predicted than Attention in the Posterior Parietal Cortex
We decoded on a trial-by-trial basis the location of visual targets, as a marker of the locus of attention, and intentions to reach and to saccade in different directions using the activity of neurons in the posterior parietal cortex of two monkeys. Predictions of target locations were significantly worse than predictions of movement plans for the same target locations. Moreover, neural signals in the parietal reach region (PRR) gave better predictions of reaches than saccades, whereas signals in the lateral intraparietal area (LIP) gave better predictions of saccades than reaches. Taking together the activity of both areas, the prediction of either movement in all directions became nearly perfect. These results cannot be explained in terms of an attention effect and support the idea of two segregated populations in the posterior parietal cortex, PRR and LIP, that are involved in different movement plans
Long-term coding of personal and universal associations underlying the memory web in the human brain
Neurons in the medial temporal lobe (MTL), a critical area for declarative memory, have been shown to change their tuning in associative learning tasks. Yet, it is unclear how durable these neuronal representations are and if they outlast the execution of the task. To address this issue, we studied the responses of MTL neurons in neurosurgical patients to known concepts (people and places). Using association scores provided by the patients and a web-based metric, here we show that whenever MTL neurons respond to more than one concept, these concepts are typically related. Furthermore, the degree of association between concepts could be successfully predicted based on the neurons’ response patterns. These results provide evidence for a long-term involvement of MTL neurons in the representation of durable associations, a hallmark of human declarative memory
Data driven optimal filtering for phase and frequency of noisy oscillations: application to vortex flowmetering
A new method for extracting the phase of oscillations from noisy time series
is proposed. To obtain the phase, the signal is filtered in such a way that the
filter output has minimal relative variation in the amplitude (MIRVA) over all
filters with complex-valued impulse response. The argument of the filter output
yields the phase. Implementation of the algorithm and interpretation of the
result are discussed. We argue that the phase obtained by the proposed method
has a low susceptibility to measurement noise and a low rate of artificial
phase slips. The method is applied for the detection and classification of mode
locking in vortex flowmeters. A novel measure for the strength of mode locking
is proposed.Comment: 12 pages, 10 figure
Complex lithium ion dynamics in simulated LiPO3 glass studied by means of multi-time correlation functions
Molecular dynamics simulations are performed to study the lithium jumps in
LiPO3 glass. In particular, we calculate higher-order correlation functions
that probe the positions of single lithium ions at several times. Three-time
correlation functions show that the non-exponential relaxation of the lithium
ions results from both correlated back-and-forth jumps and the existence of
dynamical heterogeneities, i.e., the presence of a broad distribution of jump
rates. A quantitative analysis yields that the contribution of the dynamical
heterogeneities to the non-exponential depopulation of the lithium sites
increases upon cooling. Further, correlated back-and-forth jumps between
neighboring sites are observed for the fast ions of the distribution, but not
for the slow ions and, hence, the back-jump probability depends on the
dynamical state. Four-time correlation functions indicate that an exchange
between fast and slow ions takes place on the timescale of the jumps
themselves, i.e., the dynamical heterogeneities are short-lived. Hence, sites
featuring fast and slow lithium dynamics, respectively, are intimately mixed.
In addition, a backward correlation beyond the first neighbor shell for highly
mobile ions and the presence of long-range dynamical heterogeneities suggest
that fast ion migration occurs along preferential pathways in the glassy
matrix. In the melt, we find no evidence for correlated back-and-forth motions
and dynamical heterogeneities on the length scale of the next-neighbor
distance.Comment: 12 pages, 13 figure
A Fast and Reliable Method for Simultaneous Waveform, Amplitude and Latency Estimation of Single-Trial EEG/MEG Data
The amplitude and latency of single-trial EEG/MEG signals may provide valuable information concerning human brain functioning. In this article we propose a new method to reliably estimate single-trial amplitude and latency of EEG/MEG signals. The advantages of the method are fourfold. First, no a-priori specified template function is required. Second, the method allows for multiple signals that may vary independently in amplitude and/or latency. Third, the method is less sensitive to noise as it models data with a parsimonious set of basis functions. Finally, the method is very fast since it is based on an iterative linear least squares algorithm. A simulation study shows that the method yields reliable estimates under different levels of latency variation and signal-to-noise ratioÕs. Furthermore, it shows that the existence of multiple signals can be correctly determined. An application to empirical data from a choice reaction time study indicates that the method describes these data accurately
Free choice activates a decision circuit between frontal and parietal cortex
We often face alternatives that we are free to choose between. Planning movements to select an
alternative involves several areas in frontal and parietal cortex that are anatomically connected into long-range circuits. These areas must coordinate their activity to select a common movement goal, but how neural circuits make decisions remains poorly understood. Here we simultaneously record from the dorsal premotor area (PMd) in frontal cortex and the parietal reach region (PRR) in parietal cortex to investigate neural circuit mechanisms for decision making. We find that correlations in spike and local field potential (LFP) activity between these areas are greater when monkeys are freely making choices than when they are following instructions. We propose that a decision circuit featuring a sub-population of cells in frontal and parietal cortex may exchange information to coordinate activity between these areas. Cells participating in this decision circuit may influence movement choices by providing a common bias to the selection of movement goals
- …