7,647 research outputs found

    Nuclear β+\beta^+/EC decays in covariant density functional theory and the impact of isoscalar proton-neutron pairing

    Full text link
    Self-consistent proton-neutron quasiparticle random phase approximation based on the spherical nonlinear point-coupling relativistic Hartree-Bogoliubov theory is established and used to investigate the β+\beta^+/EC-decay half-lives of neutron-deficient Ar, Ca, Ti, Fe, Ni, Zn, Cd, and Sn isotopes. The isoscalar proton-neutron pairing is found to play an important role in reducing the decay half-lives, which is consistent with the same mechanism in the β\beta decays of neutron-rich nuclei. The experimental β+\beta^+/EC-decay half-lives can be well reproduced by a universal isoscalar proton-neutron pairing strength.Comment: 12 pages, 4 figure

    Quantization and Corrections of Adiabatic Particle Transport in a Periodic Ratchet Potential

    Full text link
    We study the transport of an overdamped particle adiabatically driven by an asymmetric potential which is periodic in both space and time. We develop an adiabatic perturbation theory after transforming the Fokker-Planck equation into a time-dependent hermitian problem, and reveal an analogy with quantum adiabatic particle transport. An analytical expression is obtained for the ensemble average of the particle velocity in terms of the Berry phase of the Bloch states. Its time average is shown to be quantized as a Chern number in the deterministic or tight-binding limit, with exponentially small corrections. In the opposite limit, where the thermal energy dominates the ratchet potential, a formula for the average velocity is also obtained, showing a second order dependence on the potential.Comment: 8 page

    Non-vanishing spin Hall currents in disordered spin-orbit coupling systems

    Get PDF
    Spin currents that flow perpendicular to the electric field direction are generic in metals and doped semiconductors with spin-orbit coupling. It has recently been argued that the spin Hall conductivity can be dominated by an intrinsic contribution which follows from Bloch state distortion in the presence of an electric field. Here we report on an numerical demonstration of the robustness of this effect in the presence of disorder scattering for the case of a two-dimensional electron-gas with Rashba spin-orbit interactions (R2DES).Comment: 4 pages, 3 figure

    Self-similarity under inflation and level statistics: a study in two dimensions

    Full text link
    Energy level spacing statistics are discussed for a two dimensional quasiperiodic tiling. The property of self-similarity under inflation is used to write a recursion relation for the level spacing distributions defined on square approximants to the perfect quasiperiodic structure. New distribution functions are defined and determined by a combination of numerical and analytical calculations.Comment: Latex, 13 pages including 6 EPS figures, paper submitted to PR

    Temperature dependence of electron-spin relaxation in a single InAs quantum dot at zero applied magnetic field

    Full text link
    The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the electron-spin relaxation is clearly divided into two different temperature regimes: (i) T < 50 K, spin relaxation depends on the dynamical nuclear spin polarization (DNSP) and is approximately temperature-independent, as predicted by Merkulov et al. (ii) T > about 50 K, spin relaxation speeds up with increasing temperature. A model of two LO phonon scattering process coupled with hyperfine interaction is proposed to account for the accelerated electron spin relaxation at higher temperatures.Comment: 10 pages, 4 figure

    Sand/dust storm processes in Northeast Asia and associated large-scale circulations

    Get PDF
    International audienceThis paper introduces a definition of sand/dust storm process as a new standard and idea of sand/dust storm (SDS) groups a number of SDS-events in Northeast Asia. Based on the meteorological data from WMO/GOS network, 2456 Chinese surface stations and NCEP-NCAR reanalysis, the sand/dust storm processes in Northeast Asia in spring 2000?2006 are investigated. And the evolutions of anomalies of general circulation in the troposphere are analyzed by comparing the spring having most and least occurrences of SDS in year 2006 and 2003. Associated with the noticeably increased occurrence of SDS processes in spring 2006, the anomalies in 3-D structure of general circulation especially in the mid-and high latitudes of the Northen Hemisphere (NH) are revealed. The transition period from the winter of 2005 to spring 2006 has witnessed a fast-developed high center over the circumpolar vortex area in the upper troposphere, which pushes the polar vortex more southwards to mid-latitudes with a more extensive area over the east NH. In spring 2006, there are the significant circulation anomalies in the middle troposphere from the Baikal Lake to northern China with a stronger southward wind anomaly over Northeast Asia. Compared with a normal year, stronger meridional wind with a southward wind anomaly also in the lower troposphere prevail over the arid and semiarid regions in Mongolia and northern China during spring 2006. The positive anomalies of surface high pressure registered an abnormal high of 4?10 hPa in the Tamil Peninsular make a stronger cold air source for the repeated cold air outbreak across the desert areas in spring 2006 resulting in the most frequent SDS seasons in the last 10 years in Northeast Asia

    Sand/dust storms over Northeast Asia and associated large-scale circulations in spring 2006

    No full text
    International audienceThis paper presents a study on the meteorological conditions that accompany the sand/dust storms (SDS) of East Asia in spring 2006, based on the SDS data collected both by WMO during 2000?2006 and by 2456 Chinese surface stations, and on the meteorological reanalysis data from NCEP-NCAR . The evolution of 3-D structures of the general circulations prevailed in both winter and spring as well as their annual anomalies were investigated by comparing the years having most and least occurrences of SDS between 2000 and 2006. It is found that spring 2006 featured a noticeably increased occurrence of SDS, compared with previous years. The general circulations prevailed through both winter and spring, especially the 3-D structure of the polar circulation, show the significant anomalies compared to a normal year. This produced a range of corresponding weather phenomena, including circumpolar vortices at the upper troposphere, mid-level westerly jets, and lower zonal winds, which all favored the SDS production and transport in 2006. The study also reveals a fact that comparing with a normal year, the transitional period from the winter of 2005 to the spring of 2006 has witnessed a fast-developed high center at the upper troposphere of the northern hemisphere and the circumpolar vortex area, which pushes the area dominated by the circumpolar vortices further to mid-latitudes. The circumpolar vortices shifted southwards, and prevailed over an extensive area across the northeast hemisphere for a sustained period. The mid-high latitude areas that sit in the south of the circumpolar vortices in Asia have experienced significantly abnormal westerly jets at the mid-level of troposphere. Zonal winds prevailed at the mid and lower levels of troposphere. Sea level pressure registered an abnormal high at 4?10 hPa, compared with a normal year. The above-mentioned 3-D structures of general circulation have created thermal and dynamic conditions that favor the repeated genesis and momentous development of the Mongolian cyclones, which in turn contributes to the frequent occurrences and long distance transport of SDS
    corecore