69,292 research outputs found
Solar powered aircraft
A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the Sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils
The Democratization of Invention in the American South: Antebellum and Post Bellum Technology Markets in the United States
Patenting expanded rapidly across the post bellum South as its transportation network filled in and city growth extended markets. This was consistent with Sokoloff and Khan (1990), who demonstrated the elastic supply of patentable ideas in early America. Successful innovation required that inventors could or did sell their property rights through "assignment" to those who commercialized new technology. The assignment characteristics of 1912 southern patents were examined. Southern "border" state patents had a higher rate of marketable assignments than those issued to residents in the Deep South. Greater commercialization of patents in border state cities accounted for most of this difference.post-bellum South, invention, patents
Computed structures of polyimides model compounds
Using a semi-empirical approach, a computer study was made of 8 model compounds of polyimides. The compounds represent subunits from which NASA Langley Research Center has successfully synthesized polymers for aerospace high performance material application, including one of the most promising, LARC-TPI polymer. Three-dimensional graphic display as well as important molecular structure data pertaining to these 8 compounds are obtained
Resolution changes in lithium-drifted silicon semiconductor detectors irradiated with 0.5, 1.0, 2.0, and 3.0 MeV electrons
Electron irradiation effect on resolution of lithium-drifted silicon semiconductor detector
Temperature dependence of emission measure in solar X-ray plasmas. 1: Non-flaring active regions
X-ray and ultraviolet line emission from hot, optically thin material forming coronal active regions on the sun may be described in terms of an emission measure distribution function, Phi (T). A relationship is developed between line flux and Phi (T), a theory which assumes that the electron density is a single-valued function of temperature. The sources of error involved in deriving Phi (T) from a set of line fluxes are examined in some detail. These include errors in atomic data (collisional excitation rates, assessment of other mechanisms for populating excited states of transitions, element abundances, ion concentrations, oscillator strengths) and errors in observed line fluxes arising from poorly - known instrumental responses. Two previous analyses are discussed in which Phi (T) for a non-flaring active region is derived. A least squares method of Batstone uses X-ray data of low statistical significance, a fact which appears to influence the results considerably. Two methods for finding Phi (T) ab initio are developed. The coefficients are evaluated by least squares. These two methods should have application not only to active-region plasmas, but also to hot, flare-produced plasmas
The Solar Photospheric-to-Coronal Fe abundance from X-ray Fluorescence Lines
The ratio of the Fe abundance in the photosphere to that in coronal flare
plasmas is determined by X-ray lines within the complex at 6.7~keV (1.9~\AA)
emitted during flares. The line complex includes the He-like Fe (\fexxv)
resonance line (6.70~keV) and Fe K lines (6.39, 6.40~keV), the
latter being primarily formed by the fluorescence of photospheric material by
X-rays from the hot flare plasma. The ratio of the Fe K lines to the
\fexxv\ depends on the ratio of the photospheric-to-flare Fe abundance,
heliocentric angle of the flare, and the temperature of the
flaring plasma. Using high-resolution spectra from X-ray spectrometers on the
{\em P78-1} and {\em Solar Maximum Mission} spacecraft, the Fe abundance in
flares is estimated to be and times the photospheric
Fe abundance, the {\em P78-1} value being preferred as it is more directly
determined. This enhancement is consistent with results from X-ray spectra from
the {\em RHESSI} spacecraft, but is significantly less than a factor 4 as in
previous work.Comment: Accepted for publication by MNRA
Effective field theory description of halo nuclei
Nuclear halos emerge as new degrees of freedom near the neutron and proton
driplines. They consist of a core and one or a few nucleons which spend most of
their time in the classically-forbidden region outside the range of the
interaction. Individual nucleons inside the core are thus unresolved in the
halo configuration, and the low-energy effective interactions are short-range
forces between the core and the valence nucleons. Similar phenomena occur in
clusters of He atoms, cold atomic gases near a Feshbach resonance, and some
exotic hadrons. In these weakly-bound quantum systems universal scaling laws
for s-wave binding emerge that are independent of the details of the
interaction. Effective field theory (EFT) exposes these correlations and
permits the calculation of non-universal corrections to them due to
short-distance effects, as well as the extension of these ideas to systems
involving the Coulomb interaction and/or binding in higher angular-momentum
channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo
nuclei, has been used to compute the properties of single-neutron, two-neutron,
and single-proton halos of s-wave and p-wave type. This review summarizes these
results for halo binding energies, radii, Coulomb dissociation, and radiative
capture, as well as the connection of these properties to scattering
parameters, thereby elucidating the universal correlations between all these
observables. We also discuss how Halo EFT's encoding of the long-distance
physics of halo nuclei can be used to check and extend ab initio calculations
that include detailed modeling of their short-distance dynamics.Comment: 104 pages, 31 figures. Topical Review for Journal of Physics G. v2
incorporates several modifications, particularly to the Introduction, in
response to referee reports. It also corrects multiple typos in the original
submission. It corresponds to the published versio
- …
