69,292 research outputs found

    Solar powered aircraft

    Get PDF
    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the Sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils

    The Democratization of Invention in the American South: Antebellum and Post Bellum Technology Markets in the United States

    Get PDF
    Patenting expanded rapidly across the post bellum South as its transportation network filled in and city growth extended markets. This was consistent with Sokoloff and Khan (1990), who demonstrated the elastic supply of patentable ideas in early America. Successful innovation required that inventors could or did sell their property rights through "assignment" to those who commercialized new technology. The assignment characteristics of 1912 southern patents were examined. Southern "border" state patents had a higher rate of marketable assignments than those issued to residents in the Deep South. Greater commercialization of patents in border state cities accounted for most of this difference.post-bellum South, invention, patents

    Computed structures of polyimides model compounds

    Get PDF
    Using a semi-empirical approach, a computer study was made of 8 model compounds of polyimides. The compounds represent subunits from which NASA Langley Research Center has successfully synthesized polymers for aerospace high performance material application, including one of the most promising, LARC-TPI polymer. Three-dimensional graphic display as well as important molecular structure data pertaining to these 8 compounds are obtained

    Resolution changes in lithium-drifted silicon semiconductor detectors irradiated with 0.5, 1.0, 2.0, and 3.0 MeV electrons

    Get PDF
    Electron irradiation effect on resolution of lithium-drifted silicon semiconductor detector

    Temperature dependence of emission measure in solar X-ray plasmas. 1: Non-flaring active regions

    Get PDF
    X-ray and ultraviolet line emission from hot, optically thin material forming coronal active regions on the sun may be described in terms of an emission measure distribution function, Phi (T). A relationship is developed between line flux and Phi (T), a theory which assumes that the electron density is a single-valued function of temperature. The sources of error involved in deriving Phi (T) from a set of line fluxes are examined in some detail. These include errors in atomic data (collisional excitation rates, assessment of other mechanisms for populating excited states of transitions, element abundances, ion concentrations, oscillator strengths) and errors in observed line fluxes arising from poorly - known instrumental responses. Two previous analyses are discussed in which Phi (T) for a non-flaring active region is derived. A least squares method of Batstone uses X-ray data of low statistical significance, a fact which appears to influence the results considerably. Two methods for finding Phi (T) ab initio are developed. The coefficients are evaluated by least squares. These two methods should have application not only to active-region plasmas, but also to hot, flare-produced plasmas

    The Solar Photospheric-to-Coronal Fe abundance from X-ray Fluorescence Lines

    Full text link
    The ratio of the Fe abundance in the photosphere to that in coronal flare plasmas is determined by X-ray lines within the complex at 6.7~keV (1.9~\AA) emitted during flares. The line complex includes the He-like Fe (\fexxv) resonance line ww (6.70~keV) and Fe Kα\alpha lines (6.39, 6.40~keV), the latter being primarily formed by the fluorescence of photospheric material by X-rays from the hot flare plasma. The ratio of the Fe Kα\alpha lines to the \fexxv\ ww depends on the ratio of the photospheric-to-flare Fe abundance, heliocentric angle θ\theta of the flare, and the temperature TeT_e of the flaring plasma. Using high-resolution spectra from X-ray spectrometers on the {\em P78-1} and {\em Solar Maximum Mission} spacecraft, the Fe abundance in flares is estimated to be 1.6±0.51.6\pm 0.5 and 2.0±0.32.0 \pm 0.3 times the photospheric Fe abundance, the {\em P78-1} value being preferred as it is more directly determined. This enhancement is consistent with results from X-ray spectra from the {\em RHESSI} spacecraft, but is significantly less than a factor 4 as in previous work.Comment: Accepted for publication by MNRA

    Effective field theory description of halo nuclei

    Full text link
    Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4^4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.Comment: 104 pages, 31 figures. Topical Review for Journal of Physics G. v2 incorporates several modifications, particularly to the Introduction, in response to referee reports. It also corrects multiple typos in the original submission. It corresponds to the published versio
    corecore