11,270 research outputs found

    Reduction of the COSMOS Southern Sky galaxy survey data to the RC3 standard system

    Get PDF
    After having cross-identified a subsample of LEDA galaxies in the COSMOS database, we defined the best relations to convert COSMOS parameters (coordinates, position angle, diameter, axis ratio and apparent magnitude) into RC3 system used in the LEDA database. Tiny secondary effects can be tested: distance to plate cenetrs effect and air-mass effect. The converted COSMOS parameters are used to add missing parameters on LEDA galaxies. Key words: galaxies - catalogue - photometryComment: 5 pages, postcript including figures, to appear in MNRAS, reprint requests: [email protected]

    Parol Evidence Rule in Missouri, The

    Get PDF

    Wind Channeling, Magnetospheres, And Spindown Of Magnetic Massive Stars

    Get PDF
    A subpopulation (~10%) of hot, luminous, massive stars have been revealed through spectropolarimetry to harbor strong (hundreds to tens of thousand Gauss), steady, large-scale (often significantly dipolar) magnetic fields. This review focuses on the role of such fields in channeling and trapping the radiatively driven wind of massive stars, including both in the strongly perturbed outflow from open field regions, and the wind-fed “magnetospheres” that develop from closed magnetic loops. For B-type stars with weak winds and moderately fast rotation, one finds “centrifugal magnetospheres”, in which rotational support allows magnetically trapped wind to accumulate to a large density, with quite distinctive observational signatures, e.g. in Balmer line emission. In contrast, more luminous O-type stars have generally been spun down by magnetic braking from angular momentum loss in their much stronger winds. The lack of centrifugal support means their closed loops form a “dynamical magnetosphere”, with trapped material falling back to the star on a dynamical timescale; nonetheless, the much stronger wind feeding leads to a circumstellar density that is still high enough to give substantial Balmer emission. Overall, this review describes MHD simulations and semi-analytic dynamical methods for modeling the magnetospheres, the magnetically channeled wind outflows, and the associated spin-down of these magnetic massive stars

    Senior Recital: Michael H. Petit Jr., violin

    Get PDF

    Comparison of RBG-banded karyotypes of cattle, sheep and goat

    Get PDF

    An `Analytic Dynamical Magnetosphere' formalism for X-ray and optical emission from slowly rotating magnetic massive stars

    Get PDF
    Slowly rotating magnetic massive stars develop "dynamical magnetospheres" (DM's), characterized by trapping of stellar wind outflow in closed magnetic loops, shock heating from collision of the upflow from opposite loop footpoints, and subsequent gravitational infall of radiatively cooled material. In 2D and 3D magnetohydrodynamic (MHD) simulations the interplay among these three components is spatially complex and temporally variable, making it difficult to derive observational signatures and discern their overall scaling trends.Within a simplified, steady-state analysis based on overall conservation principles, we present here an "analytic dynamical magnetosphere" (ADM) model that provides explicit formulae for density, temperature and flow speed in each of these three components -- wind outflow, hot post-shock gas, and cooled inflow -- as a function of colatitude and radius within the closed (presumed dipole) field lines of the magnetosphere. We compare these scalings with time-averaged results from MHD simulations, and provide initial examples of application of this ADM model for deriving two key observational diagnostics, namely hydrogen H-alpha emission line profiles from the cooled infall, and X-ray emission from the hot post-shock gas. We conclude with a discussion of key issues and advantages in applying this ADM formalism toward derivation of a broader set of observational diagnostics and scaling trends for massive stars with such dynamical magnetospheres.Comment: 15 pages, 11 figures, accepted for MNRA

    A MiMeS analysis of the magnetic field and circumstellar environment of the weak-wind O9 sub-giant star HD 57682

    Full text link
    I will review our recent analysis of the magnetic properties of the O9IV star HD 57682, using spectropolarimetric observations obtained with ESPaDOnS at the Canada-France-Hawaii telescope within the context of the Magnetism in Massive Stars (MiMeS) Large Program. I discuss our most recent determination of the rotational period from longitudinal magnetic field measurements and Halpha variability - the latter obtained from over a decade's worth of professional and amateur spectroscopic observations. Lastly, I will report on our investigation of the magnetic field geometry and the effects of the field on the circumstellar environment.Comment: 2 pages, 2 figures, IAUS272 - Active OB Stars: Structure, Evolution, Mass Loss and Critical Limit

    Structural behavior of uranium dioxide under pressure by LSDA+U calculations

    Full text link
    The structural behavior of UO2 under high pressure up to 300GPa has been studied by first-principles calculations with LSDA+U approximation. The results show that a pressure-induced structural transition to the cotunnite-type (orthorhombic Pnma) phase occurs at 38GPa. It agrees well with the experimentally observed ~42 GPa. An isostructural transition following that is also predicted to take place from 80 to 130GPa, which has not yet been observed in experiments. Further high compression beyond 226GPa will result in a metallic and paramagnetic transition. It corresponds to a volume of 90A^3 per cell, in good agreement with a previous theoretical analysis in the reduction of volume required to delocalize 5f states.Comment: 10 pages, 8 figure
    • …
    corecore