33 research outputs found
Skin color and severe maternal outcomes: evidence from the brazilian network for surveillance of severe maternal morbidity
Taking into account the probable role that race/skin color may have for determining outcomes in maternal health, the objective of this study was to assess whether maternal race/skin color is a predictor of severe maternal morbidity. This is a secondary analysis of the Brazilian Network for Surveillance of Severe Maternal Morbidity, a national multicenter cross-sectional study of 27 Brazilian referral maternity hospitals. A prospective surveillance was performed to identify cases of maternal death (MD), maternal near miss (MNM) events, and potentially life-threatening conditions (PLTC), according to standard WHO definition and criteria. Among 9,555 women with severe maternal morbidity, data on race/skin color was available for 7,139 women, who were further divided into two groups: 4,108 nonwhite women (2,253 black and 1,855 from other races/skin color) and 3,031 white women. Indicators of severe maternal morbidity according to WHO definition are shown by skin color group. Adjusted Prevalence Ratios (PRadj - 95%CI) for Severe Maternal Outcome (SMO=MNM+MD) were estimated according to sociodemographic/obstetric characteristics, pregnancy outcomes, and perinatal results considering race. Results. Among 7,139 women with severe maternal morbidity evaluated, 90.5% were classified as PLTC, 8.5% as MNM, and 1.6% as MD. There was a significantly higher prevalence of MNM and MD among white women. MNMR (maternal near miss ratio) was 9.37 per thousand live births (LB). SMOR (severe maternal outcome ratio) was 11.08 per 1000 LB, and MMR (maternal mortality ratio) was 170.4 per 100,000 LB. Maternal mortality to maternal near miss ratio was 1 to 5.2, irrespective of maternal skin color. Hypertension, the main cause of maternal complications, affected mostly nonwhite women. Hemorrhage, the second more common cause of maternal complication, predominated among white women. Nonwhite skin color was associated with a reduced risk of SMO in multivariate analysis. Nonwhite skin color was associated with a lower risk for severe maternal outcomes. This result could be due to confounding factors linked to a high rate of Brazilian miscegenation.2019CNPQ - Conselho Nacional de Desenvolvimento Científico e Tecnológico402702/2008-
Número de medições repetidas de variáveis vegetativas para caracterização de clones de Castanheira-da-Amazônia.
Nesse trabalho foram avaliadas as repetibilidades de variáveis potencialmente úteis na caracterização genotípica e em testes de DHE de clones de castanheira-da-amazônia
Seleção de descritores e produção de um guia de campo para avaliação de clones de Castanheira-da-amazônia.
o presente trabalho teve como objetivos identificar variáveis e elaborar um guia de campo ilustrado, com vistas a padronizar a avaliação de descritores fenotípicos vegetativos que possam ser utilizados na caracterização de clones de castanheira e que contribuam com o cumprimento dos requisitos de registro e proteção de potenciais cultivares da espécie
Caracterização da diversidade genética intraespecífica de subamostras populacionais de cedro doce.
o presente trabalho visou estimar a divergência genética da coleção, por meio da caracterização fenotípica e molecular de parte desses indivíduos, contribuindo com informações tanto para o melhoramento quanto na definição de estratégias de conservação regional dos recursos genéticos de P. fendleri
Interleukin 32gamma (IL-32gamma) is highly expressed in cutaneous and mucosal lesions of American Tegumentary Leishmaniasis patients: association with tumor necrosis factor (TNF) and IL-10
Contains fulltext :
138334.pdf (publisher's version ) (Open Access)BACKGROUND: The interleukin 32 (IL-32) is a proinflammatory cytokine produced by immune and non-immune cells. It can be induced during bacterial and viral infections, but its production was never investigated in protozoan infections. American Tegumentary Leishmaniasis (ATL) is caused by Leishmania protozoan leading to cutaneous, nasal or oral lesions. The aim of this study was to evaluate the expression of IL-32 in cutaneous and mucosal lesions as well as in peripheral blood mononuclear cells (PBMC) exposed to Leishmania (Viannia) braziliensis. METHODS: IL-32, tumour necrosis factor (TNF) and IL-10 protein expression was evaluated by immunohistochemistry in cutaneous, mucosal lesions and compared to healthy specimens. The isoforms of IL-32alpha, beta, delta, gamma mRNA, TNF mRNA and IL-10 mRNA were assessed by qPCR in tissue biopsies of lesions and healthy skin and mucosa. In addition, PBMC from healthy donors were cultured with amastigotes of L. (V.) braziliensis. In lesions, the parasite subgenus was identified by PCR-RFLP. RESULTS: We showed that the mRNA expression of IL-32, in particular IL-32gamma was similarly up-regulated in lesions of cutaneous (CL) or mucosal (ML) leishmaniasis patients. IL-32 protein was produced by epithelial, endothelial, mononuclear cells and giant cells. The IL-32 protein expression was associated with TNF in ML but not in CL. IL-32 was not associated with IL-10 in both CL and ML. Expression of TNF mRNA was higher in ML than in CL lesions, however levels of IL-10 mRNA were similar in both clinical forms. In all lesions in which the parasite was detected, L. (Viannia) subgenus was identified. Interestingly, L. (V.) braziliensis induced only IL-32gamma mRNA expression in PBMC from healthy individuals. CONCLUSIONS: These data suggest that IL-32 plays a major role in the inflammatory process caused by L. (Viannia) sp or that IL-32 is crucial for controlling the L. (Viannia) sp infection
Extracellular vesicles from aspergillus flavus induce M1 polarization in vitro
Aspergillus flavus, a ubiquitous and saprophytic fungus, is the second most common cause of aspergillosis worldwide. Several mechanisms contribute to the establishment of the fungal infection. Extracellular vesicles (EVs) have been described as “virulence factor delivery bags” in several fungal species, demonstrating a crucial role during the infection. In this study, we evaluated production of A. flavus EVs and their immunomodulatory functions. We verified that A. flavus EVs induce macrophages to produce inflammatory mediators, such as nitric oxide, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IL-1β. Furthermore, the A. flavus EVs enhance phagocytosis and killing by macrophages and induce M1 macrophage polarization in vitro. In addition, a prior inoculation of A. flavus EVs in Galleria mellonella larvae resulted in a protective effect against the fungal infection. Our findings suggest that A. flavus EVs are biologically active and affect the interaction between A. flavus and host immune cells, priming the innate immune system to eliminate the fungal infection. Collectively, our results suggest that A. flavus EVs play a crucial role in aspergillosis53CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informação2016/03322-
Leishmania (Viannia) braziliensis amastigotes induces the expression of TNFalpha and IL-10 by human peripheral blood mononuclear cells in vitro in a TLR4-dependent manner
While the role of Toll-like receptors (TLRs) has been investigated in murine models of tegumentary leishmaniasis caused by Leishmania (Viannia) braziliensis, the interaction between TLRs and Leishmania sp. has not been investigated in human cells. The aim of this study was to evaluate the involvement of TLR4 in cytokine production of human peripheral blood mononuclear cells (PBMCs) induced by L. braziliensis, and whether the parasite alters the expression of TLR4 on monocytes/macrophages. Amastigote forms were obtained from mice lesions and PBMCs were isolated from healthy donors. PBMCs were cultured in absence or presence of IFNgamma, TLR4 neutralizing antibodies, natural antagonist of TLR4 (Bartonella LPS), TLR4 agonist (E. coli LPS), and amastigote forms. The concentrations of tumor necrosis factor (TNFalpha) and interleukin 10 (IL-10) were assayed by ELISA and TLR4 expression by flow cytometry. Amastigotes forms of L. braziliensis induced TNFalpha and IL-10 production only in IFNgamma-primed PBMCs. The TNFalpha and IL-10 production was inhibited by TLR4 neutralization, both with anti-TLR4 antibodies and Bartonella LPS. Interestingly, addition of E. coli LPS further increased TNFalpha but not IL-10 production induced by L. braziliensis amastigotes. Amastigotes of L. braziliensis strongly reduced membrane TLR4 expression on monocytes/macrophages, apparently by internalization after the infection. The present study reveals that TLR4 drives the production of TNFalpha and IL-10 induced by L. braziliensis amastigotes and that the parasites decrease TLR4 expression on monocyte surface