1,982 research outputs found

    Differential Actions of Ethanol and Trichloroethanol at Sites in the M3 and M4 Domains of the NMDA Receptor GluN2A (NR2A) Subunit

    Get PDF
    Background and purpose:  Alcohol produces its behavioural effects in part due to inhibition of N-methyl-d-aspartate (NMDA) receptors in the CNS. Previous studies have identified amino acid residues in membrane-associated domains 3 (M3) and 4 (M4) of the NMDA receptor that influence ethanol sensitivity. In addition, in other alcohol-sensitive ion channels, sedative-hypnotic agents have in some cases been shown to act at sites distinct from the sites of ethanol action. In this study, we compared the influence of mutations at these sites on sensitivity to ethanol and trichloroethanol, a sedative-hypnotic agent that is a structural analogue of ethanol. Experimental approach:  We constructed panels of mutants at ethanol-sensitive positions in the GluN2A (NR2A) NMDA receptor subunit and transiently expressed these mutants in human embryonic kidney 293 cells. We used whole-cell patch-clamp recording to assess the actions of ethanol and trichloroethanol in these mutant NMDA receptors. Key results:  Ethanol sensitivity of mutants at GluN2A(Ala825) was not correlated with any physicochemical measures tested. Trichloroethanol sensitivity was altered in two of three ethanol-insensitive mutant GluN2A subunits: GluN2A(Phe637Trp) in M3 and GluN2A(Ala825Trp) in M4, but not GluN2A(Met823Trp). Trichloroethanol sensitivity decreased with increasing molecular volume at Phe637 or increasing hydrophobicity at Ala825 and was correlated with ethanol sensitivity at both sites. Conclusions and implications:  Evidence obtained to date is consistent with a role of GluN2A(Ala825) as a modulatory site for ethanol and trichloroethanol sensitivity, but not as a binding site. Trichloroethanol appears to inhibit the NMDA receptor in a manner similar, but not identical to, that of ethanol

    Pea-barley intercrop N dynamics in farmers fields

    Get PDF
    Knowledge about crop performances in farmers’ fields provides a link between on-farm practice and re-search. Thereby scientists may improve their ability to understand and suggest solutions for the problems facing those who have the responsibility of making sound agricultural decisions. Nitrogen (N) availability is known to be highly heterogeneous in terrestrial plant communities (Stevenson and van Kessel, 1997), a heterogeneity that in natural systems is often associated with variation in the distri-bution of plant species. In intercropping systems the relative proportion of component crops is influenced by the distribution of growth factors such as N in both time and space (Jensen, 1996). In pea-barley intercrops, an increase in the N supply promotes the growth of barley thereby decreasing the N accumulation of pea and giving rise to changes in the relative proportions of the intercropped components (Jensen, 1996). The pres-sure of weeds may, however, significantly change the dynamics in intercrops (Hauggaard-Nielsen et al., 2001). Data from farmers’ fields may provide direct, spatially explicit information for evaluating the poten-tials of improving the utilisation of field variability by intercrops

    Shoreline Situation Report Accomack County, Virginia

    Get PDF
    It is the objective of this report to supply an assessment, and at least a partial integration, of those important shoreland parameters and characteristics which will aid the planners and the managers of the shorelands in making the best decisions for the utilization of this limited and very valuable resource. The report gives particular attention to the problem of shore erosion and to recommendations concerning the alleviation of the impact of this problem. In addition we have tried to include in our assessment some of the potential uses of the shoreline, particularly with respect to recreational use, since such information could be of considerable value in the way a particular segment of coast is perceived by potential users
    • …
    corecore