58 research outputs found

    Re-thinking uk transport emissions – Getting to the 2050 targets

    Get PDF
    Transport is a complex system, integral to national and international structure and without which society cannot function. At the same time, transport is a significant contributor to global greenhouse gas emissions. In the UK a step change is required in the transport sector to achieve the legally binding reduction targets of the Climate Change Act 2008. Following the UK government’s 2013 review of carbon dioxide emissions from infrastructure, this paper looks at the country’s present and projected transport emissions in the context of the transport status quo and plans for growth. It argues there is an urgent need to rebalance the transport modal mix, with all modes integrated into a seamless transport system with smart interfacing between them. Drivers for behavioural change are also essential.Engineering and Physical Sciences Research CouncilThis is the final version of the article. It first appeared from ICE Publishing via https://doi.org/10.1680/jcien.15.0007

    Increasing effectiveness and equity in strengthening health research capacity using data and metrics: recent advances of the ESSENCE mechanism

    Get PDF
    Background: The ESSENCE on Health Research initiative established a Working Group on Review of Investments in 2018 to improve coordination and collaboration among funders of health research capacity strengthening. The Working Group comprises more than a dozen ESSENCE members, including diverse representation by geography, country income level, the public sector, and philanthropy. Objective: The overall goal of the Working Group is increased research on national health priorities as well as improved pandemic preparedness, and, ultimately, fewer countries with very limited research capacity. Methods: We developed a basic set of metrics for national health research capacity, assessed different models of coordination and collaboration, took a deeper dive into eight countries to characterize their national research capacity, and began to identify opportunities to better coordinate our investments. In this article, we summarize the presentations, discussions, and outcomes of our second annual (virtual) meeting, which had more than 100 participants representing funders, researchers, and other stakeholders from higher- and lower-income countries worldwide. Findings and conclusions: Presentations on the first day included the keynote speaker, Dr. Soumya Swaminathan, chief scientist of the World Health Organization (WHO), and updates on data and metrics for research capacity, which are critical to establish targets, road maps, and budgets. The second day focused on improving collaboration and coordination among funders and other stakeholders, the potential return on investment for health research, ongoing work to increase coordination at the country level, and examples of research capacity strengthening efforts in diverse health research areas from around the world. We concluded that an intentional data- and metric-driven approach to health research capacity strengthening, emphasizing coordination among funders, local leadership, and equitable partnerships and allocation of resources, will enhance the health systems of resource-poor countries as well as the world's pandemic preparedness

    A comparison of laboratory and in situ methods to determine soil thermal conductivity for energy foundations and other ground heat exchanger applications

    Get PDF
    Soil thermal conductivity is an important factor in the design of energy foundations and other ground heat exchanger systems. It can be determined by a field thermal response test, which is both costly and time consuming, but tests a large volume of soil. Alternatively, cheaper and quicker laboratory test methods may be applied to smaller soil samples. This paper investigates two different laboratory methods: the steady-state thermal cell and the transient needle probe. U100 soil samples were taken during the site investigation for a small diameter test pile, for which a thermal response test was later conducted. The thermal conductivities of the samples were measured using the two laboratory methods. The results from the thermal cell and needle probe were significantly different, with the thermal cell consistently giving higher values for thermal conductivity. The main difficulty with the thermal cell was determining the rate of heat flow, as the apparatus experiences significant heat losses. The needle probe was found to have fewer significant sources of error, but tests a smaller soil sample than the thermal cell. However, both laboratory methods gave much lower values of thermal conductivity compared to the in situ thermal response test. Possible reasons for these discrepancies are discussed, including sample size, orientation and disturbance

    Interaction design for supporting communication between Chinese sojourners

    Get PDF
    In our global village, distance is not a barrier anymore for traveling. People experience new cultures and face accompanying difficulties in order to live anywhere. Social support can help these sojourners to cope with difficulties, such as culture shock. In this paper, we investigate how computer-mediated communication (CMC) tools can facilitate social support when living physically separated from loved-ones in different cultures. The goal is to understand the design considerations necessary to design new CMC tools. We studied communication practices of Chinese sojourners living in the Netherlands and the use of a technology probe with a novel video communication system. These results led to recommendations which can help designers to design interactive communication tools that facilitate communication across cultures. We conclude the paper with an interactive communication device called Circadian, which was designed based on these recommendations. We experienced the design recommendations to be abstract enough to leave space for creativity while providing a set of clear requirements which we used to base design decisions upon

    Molecular mechanisms and cellular functions of cGAS-STING signalling

    Get PDF
    The cGAS–STING signalling axis, comprising the synthase for the second messenger cyclic GMP–AMP (cGAS) and the cyclic GMP–AMP receptor stimulator of interferon genes (STING), detects pathogenic DNA to trigger an innate immune reaction involving a strong type I interferon response against microbial infections. Notably however, besides sensing microbial DNA, the DNA sensor cGAS can also be activated by endogenous DNA, including extranuclear chromatin resulting from genotoxic stress and DNA released from mitochondria, placing cGAS–STING as an important axis in autoimmunity, sterile inflammatory responses and cellular senescence. Initial models assumed that co-localization of cGAS and DNA in the cytosol defines the specificity of the pathway for non-self, but recent work revealed that cGAS is also present in the nucleus and at the plasma membrane, and such subcellular compartmentalization was linked to signalling specificity of cGAS. Further confounding the simple view of cGAS–STING signalling as a response mechanism to infectious agents, both cGAS and STING were shown to have additional functions, independent of interferon response. These involve non-catalytic roles of cGAS in regulating DNA repair and signalling via STING to NF-κB and MAPK as well as STING-mediated induction of autophagy and lysosome- dependent cell death. We have also learnt that cGAS dimers can multimerize and undergo liquid–liquid phase separation to form biomolecular condensates that could importantly regulate cGAS activation. Here, we review the molecular mechanisms and cellular functions underlying cGAS–STING activation and signalling, particularly highlighting the newly emerging diversity of this signalling pathway and discussing how the specificity towards normal, damage-induced and infection-associated DNA could be achieved

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    ExoClock Project III: 450 new exoplanet ephemerides from ground and space observations

    Get PDF
    The ExoClock project has been created with the aim of increasing the efficiency of the Ariel mission. It will achieve this by continuously monitoring and updating the ephemerides of Ariel candidates over an extended period, in order to produce a consistent catalogue of reliable and precise ephemerides. This work presents a homogenous catalogue of updated ephemerides for 450 planets, generated by the integration of \sim18000 data points from multiple sources. These sources include observations from ground-based telescopes (ExoClock network and ETD), mid-time values from the literature and light-curves from space telescopes (Kepler/K2 and TESS). With all the above, we manage to collect observations for half of the post-discovery years (median), with data that have a median uncertainty less than one minute. In comparison with literature, the ephemerides generated by the project are more precise and less biased. More than 40\% of the initial literature ephemerides had to be updated to reach the goals of the project, as they were either of low precision or drifting. Moreover, the integrated approach of the project enables both the monitoring of the majority of the Ariel candidates (95\%), and also the identification of missing data. The dedicated ExoClock network effectively supports this task by contributing additional observations when a gap in the data is identified. These results highlight the need for continuous monitoring to increase the observing coverage of the candidate planets. Finally, the extended observing coverage of planets allows us to detect trends (TTVs - Transit Timing Variations) for a sample of 19 planets. All products, data, and codes used in this work are open and accessible to the wider scientific community.Comment: Recommended for publication to ApJS (reviewer's comments implemented). Main body: 13 pages, total: 77 pages, 7 figures, 7 tables. Data available at http://doi.org/10.17605/OSF.IO/P298
    corecore