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Passeig Llúıs Companys 23, ES-08010, Barcelona, Spain
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1 Introduction and summary

Quantum Chromodynamics (QCD) at non-zero quark density is notoriously difficult to

analyze. The only first-principle, non-perturbative tool, namely lattice QCD, is of limited

applicability due to the so-called sign problem [1]. It is therefore useful to construct toy

models of QCD in which interesting questions can be posed and answered. The gauge/string
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duality, or holography for short [2–4], provides a framework in which the construction of

such models is possible. The goal is not to do precision physics but to be able to perform

first-principle calculations that may lead to interesting insights applicable to QCD (see

e.g. [5] for a discussion of the potential and the limitations of this approach). In the case

of QCD at non-zero temperature, the insights obtained through this program range from

static properties to far-from-equilibrium dynamics of strongly coupled plasmas (see e.g. [6]

and references therein).

The simplest four-dimensional example of holographic duality can be obtained from

the supergravity solution for a collection of Nc D3-branes. In this setup one finds an

equivalence between four-dimensional, N = 4 super Yang-Mills (SYM) theory with gauge

group SU(Nc) living on the stack of D3-branes and string theory on the near-horizon limit

of the geometry sourced by the D3-branes [2]. Since the matter in these theories is in the

adjoint representation of the gauge group, in order to consider a non-zero quark density new

degrees of freedom in the fundamental representation must be included. On the gravity side

this can be done by adding Nf so-called flavor D7-branes to the D3-brane geometry [7]. For

conciseness we will refer to these new degrees of freedom as ‘quarks’ despite the fact that

they include both bosons and fermions. Placing the theory at a non-zero quark density Nq

then corresponds to turning on Nq units of electric flux on the flavor branes [8]. This flux

sources the same supergravity fields as a density Nq of fundamental strings dissolved inside

the flavor branes. We will thus refer to Nq as the quark density, as the electric flux on the

branes, or as the string density interchangeably. Note that Nc and Nf are dimensionless

integer numbers, whereas Nq is a continuous variable with dimensions of (energy)3.

If Nf � Nc and Nq is sufficiently small then there exists an energy range in which one

can study this system in the so-called ‘probe approximation’ (see [9, 10] for early references

and [6, 11] for reviews), meaning that the gravitational backreaction of the flavor branes

and the strings on the original D3-brane geometry can be neglected. However, this approx-

imation inevitably breaks down both at sufficiently high and at sufficiently low energies.

At high energies the probe approximation breaks down because it ignores the positive

β-function of the gauge theory. One way to see this is to note that the β-function is pro-

portional to Nf/Nc and hence the logarithmic running of the coupling is a small correction

to the physics over energy ranges that are not exponentially large in Nc/Nf. However,

at sufficiently high energies the coupling constant eventually diverges because the theory

develops a Landau pole. In this region the backreaction cannot be ignored and the probe

approximation ceases to be valid. Nevertheless, this high-energy regime can be correctly

described holographically [12] by including the backreaction of the D7-branes [13].

At low energies the probe approximation breaks down because the backreaction of the

charge density always dominates the geometry sufficiently deep in the infrared (IR) no

matter how small Nq is. Changing the value of Nq simply shifts the energy scale at which

this happens. Therefore the inclusion of backreaction is not an option but a necessity in

order to identify the correct ground state of the theory.

In this paper we will find the fully backreacted supergravity solutions for the D3-D7

system at non-zero temperature T and non-zero quark-density Nq. As we will explain in

section 2, we will distribute, or smear, the flavor branes [13] (see [14] for a review) and
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Figure 1. Pictorial representation of the family of supergravity solutions and corresponding RG

flows constructed in this paper.

the strings [15] over the compact part of the geometry. We will focus on the case in which

this geometry is an S5, but our results are also valid (with the sole modification of some

numerical coefficients) if this is replaced by any other five-dimensional Sasaki-Einstein

(SE) manifold. On the gauge theory side this corresponds to replacing the maximally

supersymmetric SU(Nc) gauge theory by an N = 1 quiver theory.

The solutions that will be our main focus correspond to charge densities between zero

and a certain critical value. Solutions with charge densities above this critical value display

different, somewhat pathological IR physics, and will only be discussed in appendix F. In

the rest of the paper, including the rest of this section, we will only discuss sub-critical

solutions. These are pictorially summarised in figure 1, in which each solution on the

gravity side, or equivalently each Renormalization Group (RG) flow on the gauge theory

side, is represented by a curve running from top to bottom. Each curve corresponds to

a different value of the charge density. A point on a curve corresponds to a given energy

scale. At zero temperature a solution is described by an entire curve. Cutting off a curve

at different points would correspond to different solutions with the same charge density

and different non-zero values of the temperature. In the limit T � N1/3
q the solutions were

constructed perturbatively in N1/3
q /T in [16, 17]. In this limit, however, all the relevant

IR physics is hidden behind the horizon.
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The structure of the solutions can be simply understood as follows. In the ultraviolet

(UV) all solutions approach the neutral solution of [13], since the geometry is dominated by

the backreaction of the D3- and the D7-branes. In other words, in this limit the tempera-

ture and the quark density only produce subleading corrections. The asymptotic geometry

is singular, as it corresponds to the presence of a Landau pole in the gauge theory. This

introduces a physical scale in the theory, ΛLP, that can be compared, for example, with

T or N1/3
q . Despite the presence of the LP singularity, holographic renormalisation can

be straightforwardly implemented and physical quantities can be computed unambigu-

ously [12]. This means that, just as in Quantum Electrodynamics, the presence of the

Landau pole is no impediment for the extraction of sensible IR physics.

At zero temperature and non-zero charge the non-compact part of all solutions ap-

proaches a five-dimensional Lifshitz geometry with dynamical exponent z = 7 in the IR.

In this regime the geometry is dominated by the backreaction of the strings and the D3-

branes, with the D7-branes producing only a subleading effect. We emphasize that the

precise IR theory to which the theory flows depends on the value of the charge density

and other parameters. In other words, although in all cases the dynamical exponent is the

same, other features are different. A simple example is the number of active degrees of

freedom at low temperature, as measured by the entropy density. The Lifshitz symmetry

implies that this must scale with temperature as

s = f T 3/z = f T 3/7 , (1.1)

but the T -independent function f is not fixed by the scaling properties of the IR solution.

We will see in section 5 that this function depends on Nq and other parameters.

When the charge density vanishes the zero-temperature solution reduces to the super-

symmetric solution of [13]. This configuration flows from the Landau pole geometry in

the UV to an IR that differs “only logarithmically” from AdS5, meaning that observables

exhibit conformal invariance up to a logarithmic dependence on the energy scale. This flow

is represented by the upper diagonal straight line in figure 1. The solutions with non-zero

temperature that can be obtained by adding a horizon at different points along this line

were constructed in [12].

The logarithmic dependence of the log-AdS solution is a consequence of the running of

the coupling constant caused by the presence of the flavor branes. It is possible to perform

a scaling of all the charges in such a way that this effect disappears while the backreaction

of the strings is retained. In this limit there exists a flow from an AdS5 geometry in the

UV to a Lifshitz geometry in the IR. This flow was found in [15] and is represented by the

lower diagonal straight line in figure 1.

We will show in section 2.3 that, up to simple rescalings, the full set of zero-temperature

solutions can be reduced to a set parameterized only by the dimensionless combination

N q ∼ `3s
NqN

1/4
c

N
1/2
f

, (1.2)

where `s is the string length and we have omitted purely numerical factors (see (2.60) for
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the exact expression). Solutions with non-zero temperature depend on N q and

T ∼ `sN1/4
c T , (1.3)

where we have omitted purely numerical factors (see (3.8) for the exact expression). The

factors of Nc, Nf and `s in these equations simply reflect a convenient choice of units on

the gravity side. In particular, `s can be traded for a function of ΛLP, Nq, Nc, Nf and the

value of the coupling constant at some reference scale. This shows that N q and T are truly

gauge-theoretic parameters that can be thought of as a dimensionless charge density and

a dimensionless temperature, respectively. Moreover, the `s factors will always cancel in

dimensionless gauge theory quantities and, as we will see, the scaling with Nc of physical

quantities suffers from an ambiguity. We will come back to this point in section 6.

We can now understand the general structure of the results. For large values of N q,

which can be thought of as a large-charge density limit, the supergravity solutions transition

directly from the LP geometry to the Lifshitz geometry. Instead, for small values of N q the

solutions exhibit an intermediate region in which they display the physics of the log-AdS

region. Adding temperature simply cuts off the flows at different scales, possibly hiding

the Lifshitz and/or the log-AdS regions behind the horizon.

The main result of our analysis is the phase diagram of the system. This is schemat-

ically summarised in figure 2. We will refer to this figure as a “phase diagram” despite

the fact that it is a slight abuse of terminology, since some of the solutions are unstable

and we have not identified the putative stable solution that would be thermodynamically

preferred. Regions I, II and III are all locally thermodynamically, as well as dynamically,

unstable. We will now summarise the properties of these regions.

Region I describes the high-temperature behavior of the system. In this region the

solutions are locally thermodynamically unstable because the specific heat at constant

charge, CQ, and the charge susceptibility, χ, are both negative. The system is afflicted (at

least) by two dynamical instabilities associated to a negative speed of sound squared, c2
s,

and to a negative charge diffusion constant, D. The behavior of CQ and c2
s in this region

is the same as in the high-temperature limit of the neutral solution of [12] (in which χ

and D are not defined). In the neutral case CQ and c2
s become negative at exactly the

same point because they are related through c2
s = s/CQ, with s the entropy density. It is

remarkable that this feature extends to charged solutions in an almost charge-independent

manner. In other words, the top curve in figure 2 is almost a straight horizontal line. As

explained in [12], the high-temperature behavior follows directly from the properties of the

LP. Since our main interest is in IR features that are independent of the UV completion of

the theory, we will not discuss Region I further.

Region IV is the only stable region in the phase diagram. Local thermodynamic

stability is guaranteed by the fact that both CQ and χ are positive. Our analysis shows

no sign of a dynamical instability either, since c2
s and D are both positive. We also do not

see any indication of a global instability since the pressure (free energy) at any point in

Region IV is higher (lower) than that of the neutral phase at the same temperature. We

emphasize that this does not prove the global thermodynamic stability of Region IV, since

there could be other phases that we have not identified that have a lower free energy.

– 5 –
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Figure 2. Phase diagram of the system as a function of temperature and charge density. The

dimensionless quantities Nq and T are defined in (2.60) and (3.8), respectively. Labels I, II,

etc. refer to regions separated by continuous curves. Regions II and III split into two subregions

separated by the dashed curve. The only stable region is Region IV. At points inside the dashed

curve (bottom-right corner of the diagram) the pressure is lower than that of the neutral phase at

the same temperature.

Region III is particularly interesting since it is the low-temperature, high-charge density

region. This region is locally thermodynamically unstable since CQ > 0 but χ < 0. It is

also dynamically unstable since c2
s < 0. Interestingly, Region III includes subregions where

the charge diffusion constant can have either sign. Roughly speaking, D is positive in

all of Region III except in a small subregion at sufficiently low temperature and at a

charge density higher than those shown in figure 2. As we will see, this is correlated with

the negative sign of the enthalpy density, E + P , which itself indicates another type of

dynamical instability (see figure 13(bottom-left) and section 6). Region III also includes

two different subregions from the viewpoint of how the pressure (equal to minus the free

energy) compares to the pressure of the neutral phase at the same temperature. These are

separated by the dashed curve in figure 2. In the subregion to the left (right) of the curve the

pressure of the charged phase is higher (lower) than the pressure of the neutral phase at the

same temperature, indicating that the charged phase is thermodynamically (not) preferred

with respect to the neutral phase. Thus bubbles of the neutral phase can form inside the

charged phase in the region to the right of the dashed curve. This instability against finite

charge fluctuations is not particularly relevant in this context since the region where it is

present is also unstable against infinitesimal charge fluctuations. Finally, at higher charge
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densities than those shown in figure 2 the quantity E+3P becomes negative. We will come

back to this in section 6.

Region II is locally thermodynamically unstable since CQ > 0 but χ < 0. The speed

of sound c2
s is positive. However, in part or in all of Region II the charge diffusion constant

is D < 0, indicating a dynamical instability. As we mentioned above, the sign of D

is correlated with that of E + P . Our current numerical results suggest that c2
s is always

positive in Region II, thus D would be negative throughout the entire region. However, with

our current resolution it is difficult to definitively exclude the possibility that c2
s becomes

negative in some small subregion of Region II. If this happens then D will turn positive. Just

like Region III, Region II also includes subregions that are or are not thermodynamically

preferred with respect to the neutral phase, as indicated by the dashed curve.

The negative values of c2
s and/or D that we have encountered imply dynamical in-

stabilities in the hydrodynamic sound and charge diffusion channels, respectively, towards

the spontaneous breaking of translation invariance. This suggests that the putative, stable

phase in the corresponding regions may be a crystalline phase. We will come back to this

point in sections 5 and 6.

2 Gravitational description

We study holographically a family of theories consisting of SYM with Nc colors and Nf

massless flavors at non-zero temperature T and non-zero charge density Nq. The string

dual to this configuration is given by the geometry sourced by a stack of type IIB Nc D3-

branes coupled to a set of Nf D7-branes with Nq units of electric flux on their worldvolume.

The temperature is represented by the presence of a black brane horizon. We work in the

approximation in which the system can be described by means of type IIB supergravity

with sources. The regime of validity of this approximation will be discussed in section 3.5.

Each D7-brane extends along the directions parallel to the D3-branes and along the

holographic radial direction, and wraps a three-cycle inside the five-dimensional compact

part of the geometry. We smear the D7-branes in these compact directions in the most sym-

metric way compatible with supersymmetry. In this way we recover some of the isometries

that would be broken by a single D7-brane (or by a collection of overlapping D7-branes)

and reduce the problem to solving ordinary (as opposed to partial) differential equations.

2.1 Ten-dimensional ansatz

Four-dimensional, N = 4 SYM theory with Nc colors is holographically dual to supergravity

solutions sourced by Nc D3-branes. In the supergravity description this is encoded in a flux

of the self-dual Ramond-Ramond (RR) five-form through an appropriate five-dimensional

compact manifold M5:

F5 = Qc(1 + ∗)ω5 . (2.1)

Here ω5 is the volume form of M5, whose total dimensionless volume we denote as V5.

Quantization requires that the D3-brane charge is related to the number of colors through

Qc =
(2π`s)

4

2πV5
Nc . (2.2)

– 7 –
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Note that, unlike in refs. [18–21], we follow [12] and work with a RR charge quantized in

units of Nc instead of gsNc (for a comparison between both normalizations, see e.g. sec-

tion 4.1 of [22]). The latter choice is convenient in situations in which there is a natural

factorization of the dilaton φ of the form eφ = gse
φ̃. This is the case, for example, if the

gauge theory is conformal, since this means that the dilaton is constant and one can simply

normalize it so that φ̃ = 0 everywhere. If the gauge theory is not conformal but approaches

a fixed point in the IR or in the UV then it is natural to normalize the dilaton so that

φ̃ = 0 at the corresponding fixed point. In contrast, in the solutions that we will consider

the dilaton will run from zero to infinity and there will be no natural factorization into a

constant piece and a running piece. We will therefore work with the full dilaton, which is

related to the running YM and ’t Hooft couplings through

g2
YM = 2πeφ , λ = g2

YMNc . (2.3)

In the simplest setups the metric supported by the F5 flux is AdS5 ×M5, with M5 a

Sasaki-Einstein (SE) manifold. The radius L of these two spaces is related to the D3-brane

charge through

Qc = 4L4 . (2.4)

If M5 = S5 then the gauge theory is N = 4 SYM; otherwise it is a non-maximally super-

symmetric theory. For example, ifM5 = T 1,1 then the gauge theory is the Klebanov-Witten

quiver. In general the rank of the gauge group, the radius L and the five-dimensional ef-

fective gravitational coupling (see (2.39) below) are related through

L3

κ2
5

=
πN2

c

4V5
. (2.5)

In order to add flavor to any of the theories above it is convenient to view the SE

manifold as a U(1) fibration over a four-dimensional Kähler-Einstein (KE) base. This

geometric construction is naturally equipped with an SU(2) structure characterized by a

real one-form, η, and a real two-form, J , which is the Kähler form of the KE manifold.

These satisfy the relations

dη = 2J , dJ = 0 ,
1

2
J ∧ J ∧ η = ω5 . (2.6)

They also close on each other under Hodge dualization on the SE manifold:

∗5 η =
1

2
J ∧ J , ∗5J = J ∧ η . (2.7)

We normalize the curvature of the SE manifold so that Rab = 4 gab. Making use of the

fibration structure the most general ten-dimensional metric compatible with the symmetries

that we wish to preserve takes the form (in string frame)

ds2 = Gtt(r) dt2 +Grr(r) dr2 +Gxx(r) d~x 2 +Gb(r) ds2
KE +Gf (r) η2 , (2.8)

where t and ~x are the gauge theory Minkowski directions and r is the holographic radial

coordinate. Note that we have allowed for (i) a squashing between the fiber and the base of

– 8 –
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the SE manifold, i.e. Gb 6= Gf , since this will be produced by the backreaction of the flavor

branes, and (ii) for the possibility that Gtt 6= Gxx, since we will consider solutions with

non-zero temperature and/or non-zero charge density that will therefore break Lorentz

invariance.

As explained in section 1, the addition of flavor and a quark density on the gauge theory

corresponds on the gravity side to the addition of D7-branes with an electric Born-Infeld

(BI) field on their worldvolume of the form

F = B + 2π`2s dA , (2.9)

with B the Neveu-Schwarz (NS) potential and

A = At(r) dt (2.10)

the BI potential. These objects act as sources for both the RR fields and the NS field

strength H = dB, and hence they modify their equations of motion. For the RR fields,

through the Hodge-duality relations that these fields obey, this also leads to a modification

of their Bianchi identities, and therefore to a modification of their very definition in terms

of gauge potentials. The full action in the presence of the most general set of D7-brane

sources is discussed in appendix A, to which we refer the reader for additional details. In

this work the general equations simplify because F ∧ F = 0. Under these circumstances

the Bianchi identities take the form

dF1 = 2Qf J , (2.11a)

dF3 = H ∧ F1 + 2QfF ∧ J , (2.11b)

dF5 = 0 . (2.11c)

In these equations Qf is the D7-brane charge, related to the number of D7-branes through

Qf =
V3

8πV5
Nf , (2.12)

with V3 =
∫
J∧η the dimensionless volume of the three-dimensional submanifoldM3 ⊂M5

wrapped by any of the D7-branes. Eq. (2.11c) is satisfied by (2.1). Eq. (2.11a) is the

“violation” of the usual Bianchi identity for F1 that expresses the fact that D7-branes are

magnetic sources for F1. This violation is already present in the case of flavor without

strings discussed in [13] (see [14] for a review) and it is solved by taking

F1 = Qf η . (2.13)

For later reference, we note that in our conventions the tension of a D7-brane is

TD7 =
1

2κ2
=

2π

(2π`s)8
, (2.14)

with κ2 the ten-dimensional gravitational coupling. The second term on the right-hand

side of (2.11b) is a violation of the usual Bianchi identity for F3 which was not present for

– 9 –
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the solutions with strings but without D7-branes studied in [18]. Indeed, this term is only

present when the system contains both strings and D7-branes [16], since it comes from the

magnetic components of C6 sourced by the term∫
C6 ∧ F (2.15)

contained in the Wess-Zumino (WZ) part of the D7-branes’ action. Through the duality

relation

F3 = − ∗ F7 (2.16)

these magnetic components give rise to the second term on the right-hand side of dF3.

We thus see that, although it is the string density represented by F that sources C6, the

presence of the D7-branes is necessary since the coupling between F and C6 is supported

on their worldvolume. This coupling implies that C6 must contain a term of the form

C6 ⊃ B(r) dx1 ∧ dx2 ∧ dx3 ∧ J ∧ η , (2.17)

where B(r) is a function that will be determined below. We thus take the following ansatz

for the dual three-form:

F3 = Qst dx1 ∧ dx2 ∧ dx3 + ∗ d
[
B(r) dx1 ∧ dx2 ∧ dx3 ∧ J ∧ η

]
. (2.18)

The second term in this expression is the one implied by (2.17), whereas the first one, as we

will see, is related to the string density [15, 23]. This first term can also be interpreted as

describing a density of baryon-vertex-like D5-branes [24] wrapping the compact manifold

M5. In writing this ansatz we have already made use of the fact that we will seek solutions

with H = 0, i.e. we have discarded the first term on the right-hand side of (2.11b).

To see the relation between the first term in (2.18) and the string density we turn to

the equation of motion for the B-field:

d
δS

δdB
=
δS

δB
, (2.19)

with S the total supergravity-plus-sources action. This may be written as

d
(
e−2φ ∗H

)
= F1 ∧ ∗F3 + F3 ∧ F5 +

δSDBI

δB
, (2.20)

with

δSDBI

δB
= −

e−φ 2π`2sA′t
√
G3
xxG

2
b Gf√

−GttGrr − (2π`2sA′t)2
dx1 ∧ dx2 ∧ dx3 ∧ J ∧ η ∧ dF1 (2.21)

the contribution of the Dirac-Born-Infeld (DBI) part of the D7-brane action. Two ob-

servations are important. First, there is no explicit contribution from a variation of the

WZ term of the D7-branes because this has combined on the right-hand side of (2.20)

with other terms into the gauge-invariant, modified field strengths Fn, whose definition

is given in (A.11). Second, the left-hand side of (2.19) is not the same as the left-hand

– 10 –
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side of (2.20), since we have moved terms between both sides of the equation when going

from (2.19) to (2.20).

As anticipated above, we will solve eq. (2.20) with B = H = 0, which means that

its right-hand side must vanish. At first sight it may seem surprising that the presence of

strings does not automatically lead to a non-zero H, but the non-linearities of supergravity

imply that the H sourced by the strings can be exactly cancelled by the H sourced by

the products of RR forms in (2.20). Requiring this cancellation fixes the BI field on the

D7-branes to

2π`2s A′t = eφ
√
−GttGrr

QcQst + 4Qf B√
16Q2

f G3
xxG

2
b Gf + e2φ (QcQst + 4Qf B)2

. (2.22)

To close the circle we note that this is automatically a solution of the equation of motion

for the BI field obtained by varying the full action with respect to A. The reason is that

dA always appears together with B in the gauge-invariant combination (2.9). This means

that the so-called electric displacement, i.e. the momentum conjugate to A, is given by

δS

δdA
= 2π`2s

δS

δB
(2.23)

and therefore that the equation of motion for A,

d
δS

δdA
= 0 , (2.24)

is automatically implied by the exterior derivative of (2.19). A straightforward calculation

shows that the electric displacement is given by

δS

δdA
= 2π`2s

QcQst

2κ2
dx1 ∧ dx2 ∧ dx3 ∧ ω5 . (2.25)

The string density in the 123-directions is obtained by integrating this expression overM5,

Nq dx1 ∧ dx2 ∧ dx3 =

∫
M5

δS

δdA
, (2.26)

which finally yields the relation between the string density and Qst:

Qst = (2π)3`2s
Nq

Nc

. (2.27)

2.2 Five-dimensional effective theory

In the previous section we have written a ten-dimensional ansatz that includes all the

solutions of interest. The RR forms are given by (2.1), (2.13) and (2.18). The NS B-

field vanishes. The BI field is given by eq. (2.22). The ten-dimensional metric takes the

form (2.8). The functions that we must solve for are the metric components, B, and

the dilaton φ, all of which depend only on the radial coordinate r. For the analysis of

the solution it is convenient to reduce the ten-dimensional system to an effective five-

dimensional action. This exercise was done in a general setup in ref. [25], from where we

extract the final result, truncated to the fields of interest for us.
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We begin by parameterizing the ten-dimensional string-frame metric as

ds2
10 = eφ/2

(
e−

10
3
σds2

5 + L2e2σ−2wds2
KE + L2e2σ+8wη2

)
, (2.28)

and the effective five-dimensional metric as

ds2
5 = gtt(r) dt2 + grr(r) dr2 + gxx(r) dx2

3 . (2.29)

The RR fluxes F1 and F5 thread only internal directions so, upon dimensional reduction,

they simply produce terms in the scalar potential. In contrast, in order to dimensionally

reduce the RR three-form we must expand it in terms of five-dimensional forms that we

denote Gn (not to be confused with the ten-dimensional RR field strengths Gn defined

in appendix A). Computing the Hodge dual in (2.18) we see that F3 has the following

components:

F3 = G3 + LG2 ∧ η +
L2

√
2
G1 ∧ J . (2.30)

Imposing now the Bianchi identity (2.11b) we see that G2 and G1 can be written in terms

of gauge potentials C0, C1 (not to be confused with the ten-dimensional RR potentials Cn
defined in appendix A) as

G2 = dC1 +
Qf

L
F , G1 = dC0 −

2
√

2

L
C1 . (2.31)

We will see below that, in the gauge C0 = 0, the vector C1 is directly related to the function

B in eq. (2.18). We find it convenient to dualize the three-form G3 to a vector field in five-

dimensions. Since G3 appears in the five-dimensional action coupled topologically to the

NS potential B [25],

S5 ⊃
1

2κ2
5

∫ [
−1

2
eφ+ 20

3
σG3 ∧ ∗G3 −

2

L
B ∧G3

]
, (2.32)

its equation of motion reads

d
[
eφ+ 20

3
σ ∗G3

]
= − 4

L
H . (2.33)

Therefore we define the dual vector A1 (not to be confused with the BI potential A) and

its field strength F2 (not to be confused with the ten-dimensional RR field strengths Fn
defined in appendix A) through the relation

eφ+ 20
3
σ ∗G3 = F2 = dA1 −

4

L
B . (2.34)

In summary, the dimensional reduction of F3 gives three gauge potentials C0, C1, A1 with

field strengths G1, G2, F2. In terms of these the final result for the five-dimensional effective

action is [25]

S5 = Sgrav + SDBI , (2.35)
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where

Sgrav =
1

2κ2
5

∫ [
(R− V ) ∗ 1− 1

2
dφ ∧ ∗dφ− 40

3
dσ ∧ ∗dσ − 20 dw ∧ ∗dw

− 1

2
eφ+ 4

3
σ−8wG2 ∧ ∗G2 −

1

2
eφ−4σ+4wG1 ∧ ∗G1

− 1

2
e−φ+ 20

3
σH ∧ ∗H − 1

2
e−φ−

20
3
σF2 ∧ ∗F2

] (2.36)

and

SDBI = − 2

κ2
5

Qf

L2

∫
d5x eφ−

16
3
σ+2w

[√
− det

(
g + e−

φ
2

+ 10
3
σF
)
−
√
− det[g]

]
. (2.37)

We emphasize that this five-dimensional action is a useful way to encode the equations of

motion of the theory within the ansatz that is of interest to us, but it is not a consistent

truncation. The reason is that only solutions of the five-dimensional action for which

F ∧ F = 0 , H = 0 (2.38)

can be lifted to a solution of the original ten-dimensional equations. We have kept H in

the five-dimensional action despite the condition that it must vanish for the uplift to exist

because its equation of motion (2.43c) is non-trivial even after setting H = 0.

The five-dimensional Newton’s constant in (2.35) is related to the ten-dimensional one

through

1

2κ2
5

=
V5 L

5

2κ2
. (2.39)

We have written the DBI part of the action in a form that vanishes identically if F = 0, so

that the contribution of this part of the D7-branes’ action in the neutral case is contained

entirely in the term linear in Qf of the scalar potential

V =
1

L2

[
8 e−

40
3
σ + 4 e−

16
3
σ+2w

(
Qf e

φ + e10w − 6
)

+
Q2

f

2
e2φ− 16

3
σ−8w

]
. (2.40)

This potential can be derived from the superpotential

W =
e−

8
3
σ

L

[
4 e−4σ − e−4w

(
6 + 4 e10w −Qf e

φ
)]

(2.41)

via the usual relation

V =
1

2

[(
∂W
∂φ

)2

+
3

80

(
∂W
∂σ

)2

+
1

40

(
∂W
∂w

)2
]
− 1

3
W2 . (2.42)
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The equations of motion for the differential forms are

d
[
e−φ−

20
3
σ ∗ F2

]
= 0 , (2.43a)

d
[
eφ+ 4

3
σ−8w ∗G2

]
=

2
√

2

L
eφ−4σ+4w ∗G1 , (2.43b)

d
[
e−φ+ 20

3
σ ∗H

]
=
Qf

L
eφ+ 4

3
σ−8w ∗G2 −

4

L
e−φ−

20
3
σ ∗ F2

+
4Qf

L2

e
φ
2
−2σ+2w 2π`2s A′t

√
g3
xx√

−
[
gtt grr+e−φ+ 20

3
σ(2π`2sA′t)2

]dx1 ∧ dx2 ∧ dx3 . (2.43c)

Note that the equation for G1 follows from the exterior derivative of (2.43b). Eq. (2.43a)

is simply the Bianchi identity for G3 — see (2.34) — and it is solved by

e−φ−
20
3
σ ∗ F2 = G3 = Qst dx1 ∧ dx2 ∧ dx3 . (2.44)

In terms of the vector potential this implies

A1 = At(r) dt (2.45)

with

A′t(r) = Qst e
φ+ 20

3
σ

√
−gtt grr
g3
xx

, (2.46)

where we have used the fact that in our solution B = 0.

To treat the remaining equations it is convenient to work with the momentum conjugate

to the massive vector C1 in the gauge in which C0 = 0. Taking the ansatz

C1 = Ct(r)dt (2.47)

one can define the conjugate momentum as

B ≡ −2κ2
5L

4

4

δS5

δC ′t
= eφ+ 4

3
σ−8w L4

√
g3
xx

4
√
−gtt grr

(
C ′t +

Qf

L
2π`2sA′t

)
, (2.48)

and similarly

B′ = −2κ2
5L

4

4

δS5

δCt
= 2eφ−4σ+4wL2

√
g3
xx grr√
−gtt

Ct . (2.49)

We have chosen the normalization in such a way that this momentum coincides exactly

with the function B(r) appearing in (2.18). The equation of motion (2.43b) then becomes

simply

∂r (2.48) = (2.49) . (2.50)

Within our ansatz B = 0 the equation of motion (2.43c) for the NS form is satisfied

by choosing appropriately A′t. With the results (2.44) and (2.48) this equation becomes

0 = −4Qf

L5
B − 4Qst

L
+

4Qf

L2

e
4
3
σ+2w 2π`2s A′t

√
g3
xx√

−
[
gtt grr + e−φ+ 20

3
σ(2π`2sA′t)2

] , (2.51)
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whose solution is

2π`2s A′t =
e
φ
2
− 10

3
σ√−gtt grr

(
Qst L

4 +Qf B
)√

eφ−4σ+4wL6Q2
f g3

xx + (Qst L4 +Qf B)2
. (2.52)

This automatically solves the equation of motion for At that follows from the action (2.35):(
δS5

δA′t

)′
= 0 , (2.53)

where the electric displacement is

δS5

δA′t
=

2π`2s
2κ2

5

4Qst

L
, (2.54)

which reproduces the ten-dimensional result (2.25) upon using the relations between κ, κ5, L

and Qc.

2.3 Scalings

The action (2.35) enjoys several scaling symmetries that will allow us to work with appro-

priate dimensionless variables. To see this let us recall the length dimensions of the different

dimensionful variables in our ansatz (in this section we set the temperature to zero):

[L] = ` , [Qst] = `−1 , [B] = `3 , [t, xi, r] = ` , [At] = `−1 . (2.55)

In particular, note that Brt, Ct, At are dimensionless. In order to work with dimensionless

variables we make the following replacements

r → Lr , B → L3 B , At →
L

2π`2s
At , (2.56)

where we recall that L is a length scale in the solution related to the D3-brane charge

through (2.4). Upon this replacement the action scales homogeneously as

S → L−1 S , (2.57)

with S independent of L. The effective Newton’s constant (the normalization in front of S)

L−1

2κ2
5

=
Nc

4(2π`s)4
(2.58)

has dimensions of (length)−4, in accordance with (2.56), since we rescaled all coordinates

except the four Minkowski ones. We will use these redefined variables in our numerical

code and, from this point onward, we will drop the over-bars in most places for notational

simplicity.

The action (2.35) and the length scale L are also invariant under the following rescaling

of the five-dimensional fields:

eφ → Q−1
f eφ , Ct → Q

1/2
f Ct , {B, At, Brt,At} → Q

−1/2
f {B, At, Brt,At} . (2.59)
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Upon implementation of (2.56) and (2.59) the rescaled five-dimensional action becomes

independent of L and Qf whereas, in terms of the rescaled fields, the right-hand side of

eq. (2.44) becomes proportional to the dimensionless combination

N q =
LQst

Q
1/2
f

=
(8πV5)1/4

V
1/2

3

(2π)4`3s
NqN

1/4
c

N
1/2
f

. (2.60)

This is a crucial observation because it implies that, up to trivial rescalings, the zero-

temperature solutions only depend on N q. In practice this means that we can set Qf = 1

and Qc = 4L4 = 1 in our numerical code, use Qst as the parameter labelling our solutions,

and then replace Qst by N q and undo the rescalings above in the final answer to obtain the

full dependence of the physics on Nf, Nc and Nq. In appendix B we provide the equations

of motion for the rescaled functions of our ansatz. See the comments below eqs. (1.2)

and (1.3) concerning the `s and the Nc dependence of N q.

There is a final scaling symmetry that leaves the action, L and Qf unchanged, and is

given by

gtt → ε2gtt , gxx → ε−2/3gxx , {At, Brt, Ct,At} → ε {At, Brt, Ct,At} . (2.61)

Since this involves only dynamical fields it leads, via Noether’s theorem, to a radially

conserved quantity

h ≡ 1

2κ2
5

[√
−gtt g3

xx

grr

(
g′tt
gtt
− g′xx
gxx

)
−QstAt − 2π`2s

4QstAt
L

+ 4
Ct B
L4

]
. (2.62)

Notice that this quantity, evaluated at a horizon with the boundary conditions that the

vector fields vanish there, equals the product of the Bekenstein-Hawking entropy and the

Hawking temperature, therefore corresponding to the heat energy.

3 Numerical solutions

To solve the equations of motion given in appendix B we resort to numerical methods.

The approach we follow is to begin with the Qst = 0 black brane solutions of [12]. These

solutions depend on one parameter, the radius of the black hole horizon rh, which is related

to the temperature of the dual field theory. As we will explain below, adding a non-zero

string density has an important effect in the IR part of the geometry if the temperature

is low, but produces only a subleading correction in the UV. Therefore we can use the

Qst = 0 solutions of [12] with large rh as seeds for solutions with non-zero but small string

density. By taking small increments we can then span the (Qst, rh) space and construct in

this way solutions for different values of T and Nq.

We begin by fixing the gauge choice for the radial coordinate. We do so by specifying

the functional form of the spatial component of the ten-dimensional Einstein-frame metric.

In terms of the string-frame metric (2.8) we require that

Gxx e
−φ/2 =

r2

L2
. (3.1)
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In eqs. (2.28)–(2.29) we introduced one parameterization of the ten-dimensional string-

frame metric that is particularly convenient for the purpose of reducing the system to five

dimensions. In contrast, in order to perform the numerical integration of the equations of

motion it is more convenient to use the parameterization

ds2 = eφ/2
[
h−1/2

(
−b dt2 + dx2

3

)
+ h1/2e2f

(
dr2

c
+ 2L2 e2g−2fds2

KE + 2L2 η2

)]
, (3.2)

in terms of which the condition (3.1) becomes

h =
L4

r4
. (3.3)

This radial gauge fixing and parameterization are exactly those used in [12] for the neutral

case. As we will review below, as r →∞ the geometry approaches a hyperscaling-violating

(HV) geometry with θ = 7/2 that encodes the physics of the Landau pole. Consequently,

the dilaton diverges at r →∞.

Using the equation of motion for h and the radial Einstein equation one can solve

algebraically for c and c′. Plugging this back into the remaining equations of motion we

are left with five second-order differential equations for the functions b, f, g, φ and B which

we do not show explicitly since they are not particularly illuminating. The bottom line is

that we have reduced the problem to solving for five different functions subjected to ten

boundary conditions. This is consistent with the fact that the boundary conditions in the

UV and in the IR each depend on five parameters, as we will show now.

3.1 Boundary conditions in the UV

In the neutral case it was shown in ref. [12] that the asymptotic UV solution is given by

an HV metric with parameter θ = 7/2, supported by running scalar fields. Setting Qst = 0

in our five-dimensional action (2.35) this asymptotic solution takes the form

ds2
5 = 3 · 61/3

(
R

L

)−7/3
[

1

3

(
R

L

)2

ηµνdxµdxν + L2 dR2

R2

]
,

eφ =
1

Qf

(
R

L

)1/2

, eσ =
√

2 61/10

(
R

L

)−7/40

, ew = 61/10

(
R

L

)−1/20

,

(3.4)

where subleading corrections are of order 1/R1/2. In this expression we have changed the

radial coordinate according to ( r
L

)4
=

(
R

L

)1/2

(3.5)

in order to make the HV-form of the metric explicit.

The inclusion of a non-zero charge density does not modify this asymptotic solution

at leading order but produces only subleading corrections (except for the function B, see
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below). Returning to the parameterization of eq. (3.2) the corrected solution takes the form

ef =
√

6
L2

r2

[
1 +

κf
r4

+
κf2
r8

+O(r−12)
]
,

eg = 1−
κφ
4r4

+O(r−8) ,

eφ =
r4

L4

1

Qf

[
1 +

κφ
r4

+O(r−8)
]
,

b = 1 +
κb
r4

+O(r−8) ,

B = −L
4Qst

Qf

[
1 +

κB
r4

+O(r−8)
]
.

(3.6)

In our numerical code we have constructed the expansion in r−4 up to order r−54. All the

non-leading coefficients in this expansion are determined in terms of the five unspecified con-

stants κb, κf , κf2, κφ, and κB that will depend on the temperature and the charge density.

We note that the only difference at leading order between the neutral and the charged

configurations is in the asymptotic value of the function B: in the neutral case this tends

to zero, whereas in the charged one it approaches a non-zero constant. Looking at (2.22)

we see that the specific value of this constant ensures the physical requirement that A′t
vanishes at, and therefore that there is no electric flux through, the Landau pole. This

should be contrasted with the situation in the lower-dimensional setup of ref. [20]. In that

configuration there is no Landau pole (since the field theory is asymptotically free) and

both B and A′t vanish asymptotically.

3.2 Boundary conditions at the horizon

The presence of a finite temperature in the field theory is captured by the existence of a

black brane in the gravitational solution. The boundary conditions at the horizon are the

usual requirement that the blackening factor in (2.8) has a simple zero at r = rh and the

rest of the fields attain a finite value:

ef = efh +O(r − rh) , eg = egh +O(r − rh) , b = bh(r − rh) +O(r − rh)2 ,

eφ = eφh +O(r − rh) , B = Bh +O(r − rh) .
(3.7)

In our numerical code we have gone to seventh non-trivial order in the distance to the

horizon in these expansions. All the non-leading coefficients are determined in terms of the

five unspecified parameters fh, gh, bh, φh and Bh.

In the presence of a non-zero charge density the temperature of the solution depends

not only on rh but also on Qst. Nevertheless, rh can still be thought of as a proxy for T since

the latter is still a monotonically increasing function of rh for fixed charge, as illustrated by

figure 3. From this point onwards we will typically work with the dimensionless temperature

T = Q1/4
c T , (3.8)

as well as with the dimensionless radial coordinate introduced in (2.56):

r =
r

L
=
√

2
r

Q
1/4
c

. (3.9)
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Figure 3. Relation between temperature and horizon position at fixed values of the charge

density
√

2Nq.

3.3 Zero-temperature limit

Our numerical analysis below will show that the IR geometry of the zero-temperature so-

lutions can be understood on general grounds. Indeed, we will see that it is given by a

Lifshitz spacetime with dynamical exponent z = 7 and running dilaton and B fields. In

other words, despite the fact that in order to construct the solutions with non-zero tem-

perature we only impose regularity at the horizon, this boundary condition automatically

approaches a Lifshitz boundary condition as T → 0. The physical reason for this is that, in

the deep IR, the tension of the D7-branes is a subleading effect with respect to the backre-

action of the electric field on the D7-branes. The IR-limit of the zero-temperature solution

is therefore the same as in the D3-brane + strings system without D7-branes of [15, 18],

and it takes the form

ds2 = eφ/2

[
−ct

r14

L14
b dt2 +

r2

L2
dx2 +

10 · 1361/4

111/2

L2

r2

(
b−1dr2 +

r2

10
dΩ2

5

)]
,

eφ =
72
√

22

(34)5/4Q2
st L

2

r6

L6
,

(3.10)

together with a rapidly vanishing B ∝ r10. With respect to the radial variable u in [18] we

have performed the rescaling

u =
25/8 175/24

115/12
r . (3.11)

At zero temperature the blackening function is simply b(r) = 1. At low temperatures it is

approximately given by

b = 1−
(rh
r

)10
. (3.12)
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The dynamical exponent z = 7 can be seen by inspection of the Einstein-frame metric

given within the square brackets of (3.10).1 We have left undetermined the normalization

of the time coordinate, encoded in the constant ct. This factor contains UV information

via the RG flow connecting the UV-normalized time coordinate to the IR one of (3.10).

The ten-dimensional solution (3.10) can be seen to arise as the uplift of an exact

solution of our setup (2.35) in the following limit.2 First one should perform a Legendre

transform in the action to trade the radial derivatives of At in favor of the charge density

parameter Qst, with the help of the relation (2.22). Then one must take Qf → 0 keeping

Qst finite. The result of this procedure is that the DBI action of the D7-branes becomes a

Nambu-Goto action for a set of fundamental strings [8]. In other words, in this limit the

tension of the D7-branes is subleading with respect to the effect of the charge density —

see eq. (C.7). Once this limit is taken it is a simple exercise to check that the equations of

motion for B and for the metric are compatible with setting B = 0 and Gf = Gb, meaning

that the full symmetry of the five-dimensional compact manifold is recovered in the deep

IR, i.e. the squashing vanishes in this limit. An exact scaling solution of the resulting

equations was first found in [27] and studied in detail in [15, 18].

The argument in the previous paragraph just shows that (3.10) is an asymptotic IR

solution in the flavorless limit with an external charge density. However, in appendix D we

provide an analysis of the deformations away from this limit once the flavor effects are in-

cluded. It is shown that the irrelevant deformations of the solution (3.10) (those that vanish

in the IR) are still determined by five independent constants of integration, in agreement

with the analysis in section 3.2. In particular, the function B vanishes for r → 0 as

B ∼ − 25 33

343/2

Qf

Q3
st

r12

L12
+ β1 r

10 , (3.13)

with β1 one of the integration constants.

3.4 Numerical integration

We have seen above that the UV and IR limits of the solutions that we are seeking depend

on five integration constants in both instances. Our goal in this section is to show that

there is a choice of these ten parameters that allows us to join smoothly the UV and the

IR limits. As explained below (2.60) we can set Qc = Qf = 1 without loss of generality. In

particular this makes the radial coordinate r dimensionless. In most places in this section

we will not indicate this explicitly, but in the plots we will do so by writing r instead of r.

Since we set Qc = Qf = 1 our equations depend only on one external parameter Qst,

which at the end can be replaced by N q through (2.60). The horizon radius rh enters the

equations of motion via the IR boundary conditions and the range of integration. Therefore

the solutions depend on rh and Qst, or equivalently on T and Qst.

Our integration strategy is simple. We use the UV and the near-horizon expan-

sions (3.6) and (3.7) to shoot from r = 60 and r − rh = 10−8, respectively, at fixed

1Since dimensional reduction on the compact manifold does not change the dynamical exponent [26].
2This limit is performed explicitly in the probe approximation in appendix C.
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values of rh and Qst. Imposing continuity of the functions and their derivatives at an in-

termediate radius gives us ten conditions that allow us to completely fix the five UV and

the five IR free parameters for every value of rh and Qst, by an iterative Newton-Ralphson

method. We declare continuity when the difference between the UV- and the IR-integrated

functions is no larger than 10−50. As an initial seed we use the neutral solution constructed

in ref. [12]. In solutions with a relatively large value of the horizon rh ∼ 1 we are able to

include charge up to a critical value Qst = Q∗st ≈ 10.16. Using these new charged solutions

we then fix the charge density and start to decrease rh (equivalently, the temperature) until

the Lifshitz scaling of eq. (3.10) is observed. The smallest non-zero value of the charge for

which we construct a solution is Qst = 1/100.

One outcome of the numerical integration is the value of the IR and UV parameters

as a function of Qst and rh. These parameters encode much of the physics of the solutions.

For example, we will see in section 4 that the thermodynamic properties can be extracted

from the UV parameters. Here we will see that they help elucidate the geometric properties

of the solutions.

To see the emergence of the Lifshitz solution (3.10) for small values of rh we examine

the behavior of the functions with respect to the horizon radius at fixed charge. First of

all, comparing the metrics (3.2) and (3.10) and using the form of the blackening factor

b in (3.12) we expect that, for sufficiently small rh, the constant bh in (3.7) will scale as

(recall that Qc = Qf = 1)

bh ' b0
h r

11
h (small horizon and finite charge) , (3.14)

which is a large deviation with respect to the bh = 4/rh behavior of the neutral configu-

ration. The Qst-dependent proportionality constant b0
h in (3.14) cannot be obtained ana-

lytically since it depends on the relative normalization between the IR and the UV time

coordinates, and hence on the entire numerical solution. For the dilaton we see from (3.10)

that its value at the horizon should scale with the horizon radius as

eφh ' 72
√

22

(34)5/4

16

Q2
st

r6
h (small horizon and finite charge) (3.15)

where we have substituted Qc = 4L4 = 1. The numerical results for φh and bh for the

neutral solution and for solutions with several different values of the charge density are

shown in figure 4.

We see that for large values of rh all the curves converge to a single one, reflecting

the fact that the leading UV behavior is controlled by the neutral solution. In contrast,

for sufficiently small values of rh the charged curves deviate from the neutral one and

approach straight lines with slopes that agree precisely with those predicted by eqs. (3.14)

and (3.15). For the dilaton the normalization also agrees with that in (3.15), whereas

for the bh parameter we have performed a fit to (3.14). As expected, the value of rh at

which the IR behavior sets in decreases as the charge density decreases. In particular,

this means that solutions with small N q develop an intermediate region controlled by the

log-AdS geometry of the neutral solution, clearly visible in the left plot of figure 4, whereas
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Figure 4. IR coefficients φh and bh for different values of the charge density
√

2Nq (given in the

legend of the plot on the left-hand side). The dotted gray lines show the behavior determined by

the IR Lifshitz solution.
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Figure 5. Radial profile of the dilaton for solutions with the smallest value of rh (where the curves

end) for different values of
√

2Nq (see legend in figure 4).

solutions with large N q transition directly from the UV controlled by the neutral solution

to the IR controlled by the Lifshitz solution.

At a qualitative level, one would expect the value of the dilaton at the horizon for

a solution with non-zero temperature to be approximately the same as the value of the

dilaton at the position r = rh for a zero-temperature solution. In other words, the scalar

fields in a solution with non-zero temperature should be similar to those in a solution

at zero temperature cut off at the corresponding value of the radial coordinate. This is

confirmed by the similarity between figure 4(left) and figure 5, where we plot the radial

dependence of the dilaton for the coldest solution that we have constructed for each of the

values Qst.

The fit of the quantity b0
h as a function of Qst is presented in figure 6. From this figure

we observe that b0
h diverges as Qst → 0 approximately as Q

−9/2
st . At Qst ∼ 7 the behavior

of the function changes and eventually starts increasing again with increasing Qst. This
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Figure 6. Fit of the function b0h defined in (3.14).
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Figure 7. IR coefficients fh, gh for different values of
√

2Nq (see legend in figure 4).

change of behavior at Qst ∼ 7 is also observed in other numeric parameters presented in

this section. As we will see in the next section, at these values of the charge density a

thermodynamic instability has appeared, but we have not found a direct relation between

these two properties.

The two IR parameters of the metric, namely fh and gh, are shown in figure 7, where

we plot the ratio with respect to the horizon radius, such that the curves asymptote a

constant at small values of rh.

Both in the log-AdS region and in the Lifshitz region the squashing of the S5 disappears

and fh and gh become equal to one another. For the neutral solution the two parameters ap-

proach 1 logarithmically, whereas in the charged case they approach 1361/4/111/2 ≈ 1.029.

Moreover, at large rh both parameters must approach their value in the neutral solution,

where squashing is present. The value of rh at which the curves transition from the squashed

behavior at large-rh to the non-squashed behavior at small rh depends on Qst.
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Figure 8. IR and UV coefficients associated to the function B for different values of
√

2Nq (see

legend in figure 4). The dotted gray lines show the behavior determined by the IR Lifshitz solution.

Finally, figure 8(left) shows the horizon value Bh. We see that at small rh the slope is

that determined by the leading term in (3.13), i.e. Bh ∼ r10
h , whereas at large rh the horizon

value of B approaches the negative constant corresponding to the leading term in (3.6).

Since this constant is negative we cannot observe the behavior in the logarithmic plot we

present. In the same plot, the curve corresponding to Qst = 10 is not present since it is

negative for all values of rh. This is again a consequence of the generic change of behavior

in the IR and UV parameters that occurs when Qst ∼ 7, as commented above.

To summarise so far, we have seen that the large- and small-rh values of the IR pa-

rameters of our numerical solutions match precisely those predicted by the LP and Lifshitz

geometries, respectively. This strongly supports the fact that our configuration interpolates

between the UV LP geometry of the neutral solution and the IR Lifshitz one. Moreover,

the behavior of the dilaton at intermediate values of rh for small values of Qst supports

that in this situation the transition between the LP and the Lifshitz geometries proceeds

through an intermediate log-AdS region.

We now turn to the UV parameters in our numerical solutions. We expect their large-

rh values to match those of the neutral one. This is confirmed by figure 8(right), figure 9

and figure 10. In particular, κB and κf2 decrease as r−12
h and r−8

h , respectively. In contrast,

the small-rh values of the UV parameters are not predicted by any general argument. The

reason is that, even if the Lifshitz geometry emerges in the IR, the UV is still governed

by the LP geometry of (3.6), with the free parameters entering in the subleading terms.

Therefore the Qst-dependent values of these parameters for small rh are a prediction of our

numerical solutions. One particular value that will play an important role is that of κb. This

approaches a negative constant at small rh if Qst is small, but for Qst & 7, as in the Qst = 10

curve of figure 9, the parameter κb tends to a positive value at small rh. In figure 10(right)

the curve for Qst = 10 goes to a constant at rh = 0 approximately equal to κf2 = 17Q2
c .

The presence of an IR Lifshitz geometry in our solutions can be further verified from

the scaling of the different functions. For any ψ(r) this scaling behavior is extracted as
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Figure 9. UV coefficients κφ and κb for different values of
√

2Nq (see legend in figure 4).
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Figure 10. UV coefficients κf and κf2 for different values of
√

2Nq (see legend in figure 4).

r ψ′/ψ. Since we are interested in tracking the properties of the solutions as the position

of the horizon changes we evaluate this expression at the horizon. Thus we define

Rφ ≡
r ∂r e

φ

eφ
∣∣
r=rh

= r ∂rφ
∣∣
r=rh

, (3.16)

and similarly

Rf = r ∂rf
∣∣
r=rh

, Rg = r ∂rg
∣∣
r=rh

. (3.17)

From the Lifshitz solution (3.10) we expect to find that in the small-rh limit

lim
rh→0

Rφ = 6 , lim
rh→0

Rf = lim
rh→0

Rg = 1 , (3.18)

whereas from (3.6) we expect that at large rh

lim
rh→∞

Rφ = 4 . (3.19)
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Figure 11. Dilaton scaling Rφ as defined in eq. (3.16).

The value of Rφ extracted from our numerical solutions is shown in figure 11. As ex-

pected, we see that Rφ approaches 4 and 6 at large and small rh, respectively, for all

solutions. Moreover, at small values of Qst an intermediate region appears where Rφ be-

comes very small. This is another manifestation of the intermediate log-AdS region, in

which Rφ ∼ −1/ log rh for small rh.

3.5 Regime of validity

We are now ready to determine the regime of validity of the solution. Since we are only

interested in parametric dependences, in this analysis we will ignore all purely numerical

factors. Moreover, we will focus on the zero-temperature limit, since turning on a non-zero

temperature would simply cut-off the zero-temperature solutions. Similar discussions can

be found in [12, 18].

We must require that both supergravity and the smeared DBI action for the D7-branes

be valid. We begin with supergravity. The first condition that we must impose is

eφ � 1 . (3.20)

If this is not satisfied then string loop corrections become important and degrees of freedom

not included in supergravity, such as D-branes, become light. Since figure 5 shows that

the dilaton is a monotonically increasing function of r, we expect that the most stringent

implication of (3.20) is obtained from the UV behavior of the dilaton. Using the asymptotic
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Figure 12. Square of the Ricci tensor, Ric2 = RmnRmn, for several zero-temperature solutions

with different charge densities.

form of the solutions given in sections 3.3 and 3.1 the dilaton condition becomes

UV: eφ ∼ 1

Nf

r4 � 1 . (3.21)

IR: eφ ∼ 1

Nf

r6

N
2
q

� 1 . (3.22)

As expected, the UV result coincides with that obtained for the neutral solution in [12].

The other two conditions that we must require in order for supergravity to be valid are

that the curvature of the string-frame metric be small in string units, and that the curvature

of the Einstein-frame metric be small in Planck units.3 The result can be understood simply

by considering the two asymptotic forms of the solution in the IR and in the UV. The

reason is that, as shown in figure 12, the curvature as measured by the square of the Ricci

tensor, Ric2 = RmnRmn, exhibits two simple behaviors separated by a rapid crossover

around r ∼ 1. We will see below that the only exception to this statement occurs when

the charge density N q becomes parametrically small. In this situation the flow follows the

neutral flow and penetrates arbitrarily deeply in the log-AdS region, where eventually the

supergravity + DBI description ceases to be valid [12]. This situation will not be of interest

to us since, as we anticipated in section 1, all the interesting physics takes place at values

of N q of order 1.

As in the case of the dilaton, the two characteristic behaviors of the curvature seen in

figure 12 at small and large r are controlled by the IR and the UV asymptotic solutions of

sections 3.3 and 3.1, respectively. We have checked that the Ricci scalar, R = GmnRmn,

the square of the Ricci tensor, Ric2 = RmnRmn and the square of the Riemann tensor,

RmnpqRmnpq, behave in the same way parametrically. Since presumably the same is true for

other curvature invariants it suffices to examine Ric2. Through explicit calculation we find

3Note that in our conventions `4p ∼ `4s because we are not factoring the dilaton into a constant times a

position-dependent part.
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that the conditions that the string-frame curvature be small in string units take the form

UV: `4s Ric2
st ∼

Nf

Nc

r24 � 1 , (3.23)

IR: `4s Ric2
st ∼

Nf

Nc

N
2
q

r6 � 1 . (3.24)

These r-dependences match the r � 1 and the r � 1 behaviors shown in figure 12, re-

spectively. The curvature of the Einstein-frame metric in Planck units turns out to be

proportional to the string-frame curvature in string units, both in the IR and in the UV:

`4p Ric2
Ein ∼ eφ `4s Ric2

st . (3.25)

It follows that the condition (3.20) and the requirement that the string-frame curvature be

small in string units imply that the Einstein-frame curvature are small in Planck units. In

fact, the Einstein-frame curvature is non-divergent in the IR, as expected for the Lifshitz

times a constant-size sphere solution (3.10).4 Therefore we will ignore the Einstein-frame

curvature in the following.

Since eqs. (3.21) and (3.23) must be valid at the transition point r ∼ 1, it immediately

follows that we must have the hierarchy

1� Nf � Nc . (3.26)

Under these circumstances the IR conditions (3.22) and (3.24) are automatically satisfied

at the transition point for values of N q = O(1), and the supergravity description is valid

over the range

N
1/3
q

(
Nf

Nc

)1/6

� r � min

{
N

1/4
f ,

(
Nc

Nf

)1/24
}
, (3.27)

where the lower bound comes from (3.24) and the upper bounds come from (3.21) and (3.23).

We now turn to the constraints imposed by the requirement that the Abelian DBI

action for the D7-branes be valid [29, 30]. The first requirement concerns the characteristic

distance between nearby D7-branes, and it consists of two complementary conditions. On

the one hand, this distance must be small in macroscopic terms in order for the distribution

to be treated as continuous. This simply implies that Nf � 1. On the other hand, this

distance must be large in string units, since otherwise strings stretching between nearby

D7-branes would become light and the non-Abelian nature of the DBI action would be-

come important. Since all the D7-branes wrap the η-fiber in the internal geometry of the

metric (3.2) we must consider their separation in the KE base. The characteristic size of

this manifold is

` =
√
Gst

KE , (3.28)

with Gst
KE the coefficient in front of ds2

KE in the metric (3.2). Since inside the four-

dimensional KE base the branes are co-dimension two objects, one may effectively think

4Nevertheless the zero-temperature solutions in Einstein frame still possess a singularity at r = 0 because

tidal forces diverge at this point [28].
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of them as points in a two-dimensional space of volume ∼ `2. The volume available to

each of the branes is therefore `2/Nf. As a consequence, the typical inter-brane distance is√
`2/Nf. The requirement that this distance is large in string units is thus

`4

N2
f `4s
� 1 . (3.29)

Using the UV and the IR asymptotics we obtain

UV:
`4

N2
f `4s
∼ Nc

N3
f

� 1 , (3.30)

IR:
`4

N2
f `4s
∼ Nc

N3
f

r6

N
2
q

� 1 . (3.31)

The UV condition implies the hierarchy

1� Nf � N1/3
c , (3.32)

which is more stringent than (3.26). Similarly, the IR condition implies that

r � N
1/3
q N

1/3
f

(
Nf

Nc

)1/6

, (3.33)

which is more stringent than the IR part of (3.27). Note that the hierarchy (3.32) does not

determine which of the two upper bounds on the right-hand side of (3.27) is more stringent.

The second requirement for the DBI action to be valid is that the effective coupling

between open strings be small. In the absence of smearing this coupling would be eφNf.

However, in the presence of smearing not all the Nf branes but only the fraction contained in

a volume of string size can participate in a characteristic process involving open strings. As

argued above, this fraction is Nf `
2
s/`

2. The requirement that the effective string coupling

(squared) be small is therefore
e2φN2

f `
4
s

`4
� 1 . (3.34)

This follows automatically from (3.20) and (3.29), so it does not yield any additional

independent conditions.

Putting together the various constraints coming from supergravity and from the DBI

action we conclude that, in order for the gravity-plus-branes description to be valid, the

number of colors and the number of flavors must obey (3.32). The region of validity in

terms of the r coordinate is parametrically large and is given by

N
1/3
q N

1/3
f

(
Nf

Nc

)1/6

� r � min

{
N

1/4
f ,

(
Nc

Nf

)1/24
}
. (3.35)

4 Thermodynamics

We will now compute the thermodynamic quantities necessary to study the equilibrium

properties of the theory. This goal is greatly simplified by the way in which we wrote the

– 29 –



J
H
E
P
1
0
(
2
0
1
7
)
1
3
9

five-dimensional action (2.35). The key point is that, since we traded G3 = Qstdx
123 in

favor of F2, none of the fields in our solution has purely spatial components turned on.

Combined with the radial dependence of all fields this implies that the on-shell Lagrangian

density is given by

L =
1

2κ2
5

2
√
−g Rxx (no sum) . (4.1)

Since this is a total derivative we can write the on-shell Euclidean action I5 as

I5 =

∫
dτd3x

2κ2
5

√
gττ gxx
grr

g′xx

∣∣∣∣∣
rLP

, (4.2)

where τ is the Euclidean time and the only contribution comes from the evaluation at the

LP. The relation between the functions in the five-dimensional effective metric (2.29) and

those in the ten-dimensional metric (3.2) is

gtt = −b gxx , gxx = 2 · 22/3

(
L

r

)4/3

e
2
3

(f+4g) , grr =
2 · 22/3

c

(
L

r

)16/3

e
8
3

(f+g) ,

eσ =
√

2
L

r
e

f+4g
5 , ew = ef−g .

(4.3)

Using the expansion (3.6) in these formulas one easily obtains the asymptotics for the five-

dimensional functions. Substituting the result in (4.2) one finds that the on-shell Euclidean

action diverges as

I5 =

∫
dτd3x

2κ2
5

[
8 r4

3L5
+

8 (κf − κφ + κb)

3L5
+O(r−4)

]
. (4.4)

We must therefore regularize the integral by introducing a cutoff for the radial coordinate,

add the necessary boundary terms and take the r → ∞ limit. We first add the stan-

dard Gibbons-Hawking piece, written in terms of the trace of the extrinsic curvature at a

constant-radius slice. Using the UV expansion (3.6) we get

IGH =

∫
dτd3x

2κ2
5

[
−32 r4

3L5
−

4 (8κf − 8κφ + 11κb)

3L5
+O(r−4)

]
. (4.5)

As shown in ref. [12], counterterms associated to the asymptotically HV metric character-

ising the LP can be obtained via analytic continuation from the standard counterterms for

asymptotically AdS spacetimes, in an analysis similar to the one in [31]. In the present

situation the action (2.35) is more complicated than the one in [12] due to the inclusion

of massive and massless vector fields, which also enter via the DBI action, not just via

a Maxwell-like action. However, as stated above, the near-LP behavior of the solutions

is dominated by the neutral, supersymmetric sector of eq. (3.4). In particular, the diver-

gences are totally determined by the metric and the scalars, so we can simply take the

same counterterm as in [12], which is proportional to the superpotential (2.41). Explicit

evaluation of this term gives

IW =

∫
dτd3x

2κ2
5

[
8 r4

L5
+

4
(
κb − 6L4

)
L5

+O(r−4)

]
. (4.6)
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Adding up the three pieces we obtain a finite result in the r →∞ limit:

Itotal = I5 + IGH + IW = −
8
∫

dτd3x

2κ2
5

κf − κφ + κb + 3L4

L5
. (4.7)

As usual, we will identify this result with the grand canonical free energy density5

G = − 1∫
dτd3x

Itotal =
8

2κ2
5

κf − κφ + κb + 3L4

L5
. (4.8)

By varying IGH and IW (I5 gives a vanishing contribution) with respect to the induced

metric on the constant-radius slice we obtain two divergent expressions whose sum yields

a finite result for the boundary stress tensor:

Tµ
ν = diag (E,P, P, P ) , (4.9)

where

E =
4

2κ2
5

2κf − 2κφ + κb + 6L4

L5
, P = − 8

2κ2
5

κf − κφ + κb + 3L4

L5
= −G . (4.10)

The fact that the pressure and the free energy (4.8) differ only by a sign confirms that G is

the free energy in the grand canonical ensemble. Recalling now that the quantity h defined

in (2.62) is equal to Ts and that it is radially conserved we obtain an expression for Ts in

terms of the UV data:

Ts = − 1

2κ2
5

[
4κb
L5

+QstAt(rLP)− 4B(rLP)

L4
Ct(rLP) +

4Qst2π`
2
sAt(rLP)

L

]
. (4.11)

It is now easy to check that

G− E + Ts =
1

2κ2
5

[
−QstAt(rLP) +

4B(rLP)

L4
Ct(rLP)− 4Qst2π`

2
sAt(rLP)

L

]
. (4.12)

We will now see that the right-hand side of this expression is precisely of the form −µQst,

with µ the quark chemical potential dual to Qst. Indeed, from the action (2.35) we can

compute the momenta conjugate to the three different vectors occurring in (4.12). For At
and At this leads to two constants

ΠA ≡
δS5

δA′t
=

2π`2s
2κ2

5

4Qst

L
, ΠA ≡

δS5

δA′t
=
Qst

2κ2
5

, (4.13)

whereas for the massive vector Ct it leads to a function of r:

ΠC(r) ≡ δS5

δC ′t
= − 4

L4

B(r)

2κ2
5

. (4.14)

In this way, we can rewrite (4.12) as

G− E + Ts = −ΠAAt(rLP)−ΠC(rLP)Ct(rLP)−ΠAAt(rLP) . (4.15)

5The free energy G should not to be confused with any of the field strengths Gn introduced in section 2.2,

which always carry a subindex.
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As usual in holography, the asymptotic values of the conjugate momenta are identified

with conserved charges, whereas the asymptotic values of the vector fields themselves are

identified with the dual chemical potentials. Therefore the right-hand side of (4.15) has

the form

−
∑
i

µiQi . (4.16)

However, due to our boundary conditions there is only one independent charge Qst. This

is already apparent in the fact that both conjugate momenta in (4.13) are proportional to

Qst. Moreover, using the asymptotic expansion (3.6) we see that it is also true for ΠC since

ΠC(rLP) =
4

2κ2
5

Qst

Qf

. (4.17)

As a consequence, all three charges vary simultaneously when Qst changes, and the contri-

bution to the change in free energy is of the form µ dQst with an effective chemical potential

given by

µ =
1

2κ2
5

[
At(rLP) +

4

Qf

Ct(rLP) +
4

L
2π`2s At(rLP)

]
. (4.18)

In terms of this eq. (4.15) can be written as

G = E − Ts− µQst , (4.19)

which is nothing but the usual definition of the grand canonical free energy. Similarly, we

can now define the free energy in the canonical ensemble as6

F = G+ µQst = E − Ts , (4.20)

which in terms of UV data takes the form

F =
1

2κ2
5

[
8κf − 8κφ+8κb+24L4

L5
+QstAt(rLP) +

κBQ
2
st

6L3Qf

+
4Qst2π`

2
sAt(rLP)

L

]
. (4.21)

Note that the third term inside the brackets comes from the term proportional to Ct(rLP)

in (4.11) or (4.18). This term has been evaluated explicitly to

Ct(rLP) =
κBQst

24L3
(4.22)

using (2.49) to relate Ct(rLP) to B′(rLP) and (3.6) to evaluate B′(rLP). Note that (2.49),

together with the near-horizon expansions, implies that at the horizon

B′(rh) = const. ∼ Ct(rh)

r − rh
. (4.23)

This immediately implies Ct(rh) = 0, which is nothing but the regularity condition for a

vector field at the horizon. Analogous conditions must also be imposed on At and At in

6The free energy F should not to be confused with the field strength F2 introduced in section 2.2, which

always carries a subindex.
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order to compute At(rLP) and At(rLP), which are obtained by integrating (2.46) and (2.52)

from rh to rLP, respectively, with the boundary conditions that At(rh) = At(rh) = 0.

At this point it is useful to comment on the dimensions of several quantities. We have

already defined a dimensionless temperature T in (3.8). Similarly, we will work with a

dimensionless entropy density given by

s =
V5Q

3/4
c

πN2
c

s , (4.24)

where we recall that V5 is the volume of the SE manifold and we have used the expres-

sion (2.5) for the five-dimensional Newton’s constant. Since the dimensions of CQ and s

are the same we will use the same factor to make CQ dimensionless:

CQ =
V5Q

3/4
c

πN2
c

CQ . (4.25)

Since E and P (and F,G, etc) have the same dimensions as Ts we use the product of the

two factors above:

E =
V5Qc

πN2
c

E , P =
V5Qc

πN2
c

P . (4.26)

We refer to Qst as the charge density because of the proportionality relation (2.27), but

note that it has dimensions of (length)−1. Therefore we use precisely

√
2N q =

Q1/4
c

Q
1/2
f

Qst (4.27)

as its dimensionless counterpart, as defined in (2.60). Since µQst must have the same

dimensions as Ts it follows that the chemical potential has dimensions of (length)−3. We

emphasise that this is simply an unusual convention with no physical implications. Our

dimensionless chemical potential is therefore

µ =

√
2Q3/4

c V5Q
1/2
f

πN2
c

µ . (4.28)

The necessary coefficient to make the charge susceptibility χ dimensionless then is just the

ratio of that in Qst over that in µ, i.e.

χ =
πN2

c

2V5Q
1/2
c Qf

χ . (4.29)

Finally, we anticipate here that the dimensionless versions of the functions f, g to be in-

troduced in eqs. (5.10) and (5.12) are

f =
V5Q

9/14
c

πN2
c

f and g′ =

√
2Q3/4

c V5Q
1/2
f

πN2
c

g′ . (4.30)

We close this section with plots in figure 13 of the energy density, E, the pressure,

P , the enthalpy, E + P , and the chemical potential, µ. The sign of the enthalpy will play
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Figure 13. Dimensionless energy density, pressure, enthalpy and chemical potential, as defined

in (4.24), (4.26) and (4.28). The thick, black, continuous curves indicate the locus where the

corresponding quantity changes sign. For comparison, in the E + P plot we have also indicated

with a thick, black, dashed curve the locus where E + 3P changes sign (see also figure 20).

an important role when we discuss the charge diffusion constant below. From (4.10) we

see that E + P ∝ −κb. As we emphasised around figure 9(right), κb is always negative

except in a small region at low temperature and high charge contained within Region III

of figure 2. In this small region, shown explicitly in the bottom, right-hand corner of the

E + P plot of figure 13, κb turns positive and E + P becomes negative. Although our

numerical results suggest that the chemical potential becomes slightly negative at high

temperature, our resolution is not good enough to establish this definitively.
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5 Instabilities

We will now examine the local thermodynamic stability of the system. This is equivalent

to the positive-definiteness of minus the Hessian in the grand-canonical ensemble, namely

of the susceptibility matrix

H =


−∂

2G

∂T 2
− ∂2G

∂µ∂T

− ∂2G

∂T ∂µ
−∂

2G

∂µ2

 =


∂s

∂T

∂s

∂µ

∂Qst

∂T

∂Qst

∂µ

 , (5.1)

where all derivatives with respect to T and µ are taken with the other one constant. The

system is stable if and only if

χ =
∂Qst

∂µ

∣∣∣
T
> 0 , detH > 0 . (5.2)

The first condition is the positivity of the charge susceptibility. This can be conveniently

rewritten in terms of the canonical free energy F as

0 < χ−1 =

(
∂Qst

∂µ

)−1

T

=
∂µ

∂Qst

∣∣∣
T

=
∂2F

∂Q2
st

∣∣∣
T
. (5.3)

The second condition can be related to the specific heat at constant charge:

CQ = T
∂s

∂T

∣∣∣
Qst

. (5.4)

Indeed, using the chain rule and the equality of the crossed derivatives of F we find that

CQ = −T

[
∂2G

∂T 2
−
(
∂2G

∂T∂µ

)2(
∂2G

∂µ2

)−1

T

]
. (5.5)

It follows that

detH =
χCQ
T

. (5.6)

Therefore the stability conditions (5.2) are verified if and only if

CQ > 0 , χ−1 > 0 . (5.7)

In figure 14(left) we show a contour plot of the specific heat of our solutions as a func-

tion of T and
√

2N q, while in figure 14(right) we show slices at several different values of

the charge. We see that CQ is positive for T . 0.8 but becomes negative above this value.

This property is also illustrated by figure 15, where the negative slope of the entropy den-

sity curves as a function of T is evident at high T . In figures 14(right) and 15 we see that all

curves converge to the same one for T & 0.8. The common curve is the same as in the neu-

tral case studied in [12]. As explained in that reference, the negativity of CQ in this region

is an UV effect associated to the presence of the LP. Since in this paper we are interested

in IR physics that is safe from LP effects, we will not elaborate further on this instability.
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function of temperature for several fixed values of the charge density
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Figure 15. Entropy density as a function of temperature for various values of the charge

density
√

2Nq.

In figure 16 we show a contour plot of the inverse charge susceptibility of our solutions

as a function of T and
√

2N q. We see that the region where χ−1 is negative includes roughly

the same UV region as in the case of the specific heat. Presumably this is also a UV effect

related to the presence of the LP. However, unlike the specific heat, the inverse charge

susceptibility is also negative at arbitrarily low rh and T for charge densities
√

2N q & 0.8.

The negativity of χ signals an instability towards charge clustering, which suggests that

the putative, stable phase in this region may break translational invariance spontaneously.

We will come back to this point in section 6.

A further instability comes from the speed of sound of the system. For a system with

both energy and charge density this is given by (see e.g. [36])

c2
s =

∂P

∂E

∣∣∣
Qst

+
Qst

E + P

∂P

∂Qst

∣∣∣
E
. (5.8)
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Figure 16. Contour plot of the inverse charge susceptibility. The thick, black, continuous curve

indicates the locus where χ−1 changes sign.

After some manipulations, c2
s can be expressed in terms of our UV data as

c2
s = −

[
1 +

κ′b
2

1

κ′f − κ′φ + κ′b/2

]
− Qst

κb

[
κ′b
κ̇f − κ̇φ + κ̇b/2

κ′f − κ′φ + κ′b/2
− κ̇b

]
, (5.9)

where ˙ = d/dQst and ′ = d/drh. In figure 17(left) we show a contour plot of the result,

and in figure 17(right) several slices at constant charge. As for CQ and χ, the region where

c2
s is negative includes the UV region rh & 1, but also the IR region roughly defined by√
2N q & 0.8 and 0 ≤ T . 0.25.

At asymptotically low temperature we can use the fact that the far IR is controlled by

a Lifshitz geometry to verify the negativity of c2
s. The Lifshitz asymptotics imply that, at

sufficiently low T , the entropy density must scale as T 3/z with a possibly charge-dependent

coefficient, namely

s = f(Qst)T
3/7 . (5.10)

The function f(Qst) can be easily extracted from the numerics and is shown in figure 18(left).

Since

s = f(Qst)T
3/7 = −∂F

∂T

∣∣∣∣
Qst

, (5.11)

a simple integration of T leads to

F = −f(Qst)
7

10
T 10/7 + g(Qst) , (5.12)

where g(Qst) is a function of the charge only, related to the chemical potential through

µ =
∂F

∂Qst

∣∣∣∣∣
T

= −f ′(Qst)
7

10
T 10/7 + g′(Qst) . (5.13)
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Figure 18. Functions f and g′ defined through eqs. (5.11) and (5.13), respectively.

Using this formula we extract the function g′(Qst) from the numerically computed chemical

potential. The result is shown figure 18(right). We can now compute all the quantities of

interest. In particular

CQ =
3

7
f(Qst)T

3/7 , χ−1 = g′′(Qst) . (5.14)

Given that g′(Qst) exhibits a maximum at around Qst = 0.8, we infer that χ−1 changes

sign, becoming negative, at that value of the charge. Using (5.12) and the standard ther-

modynamic relations for the energy and the pressure

E = F + Ts ,

P = −F + µQst ,
(5.15)
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we can compute (5.8) at T = 0 with the result

c2
s(T = 0) = Qst

g′′

g′
=
Qst

µ
χ−1 . (5.16)

Since µ is positive at low temperature (see figure 13) this result shows that at T = 0 the

speed of sound squared and the charge susceptibility change sign at exactly the same value

of the charge density.

6 Discussion

We begin by addressing the fact that we used factors of `s and Nc in our definitions of di-

mensionless quantities such as the temperature (3.8), the entropy density (4.24), the charge

density (2.60), etc. The first observation is that the `s factors cancel out in dimensionless

ratios of physical quantities. For example, ignoring purely numerical factors we have that

s

T 3
∼ s

T
3 N

2
c ,

Nq

s
∼ N q

s

(
Nf

N3
c

)1/2

, etc. (6.1)

Assuming that s/T
3

is of order 1, we see in the first ratio that not only `s cancels out

but also that we seemingly get the scaling of the entropy density with Nc expected from

the number of color degrees of freedom in the theory. However, this scaling is actually

ambiguous. The reason is that in the region where s/T
3

is of order 1, namely around the

transition point between the LP and the Lifshitz geometries, so is the combination

Nf e
φ ∼ λNf

Nc

∼ 1 , (6.2)

where λ is the ’t Hooft coupling (2.3). This means that, parametrically, at that scale one

can freely replace factors of Nf and/or Nc with powers of λ. The same ambiguity affects

other physical quantities such as the second ratio in (6.1). Ultimately, this ambiguity

arises from the lack of a privileged scale or a fixed point at which to anchor the value of

the coupling.

The second observation concerns the relation between dimensionful gauge theory quan-

tities and the Landau pole scale. While the conventions we have chosen are convenient on

the gravity side, from the gauge theory viewpoint it may be more natural to measure di-

mensionful quantities in units of the intrinsic scale of the theory, namely in units of ΛLP.

In particular, it may be natural to construct the phase diagram by changing Nq and T

while keeping ΛLP fixed instead of `s. In order to do this one must define the energy scale

associated to the Landau pole. A convenient and well-motivated choice is to define ΛLP

as the mass M of a string stretching from the IR bottom of a zero-temperature geometry

all the way up to the LP [12]. Figure 19 shows this mass, normalized to the mass M0

in the neutral case, as a function of N q. The important message of this plot is that not

only M/M0 does not change parametrically as N q is varied but also that it changes rather

smoothly. This means that, in order to refer all our dimensionful quantities to the LP

scale instead of to `s, we would need to do a rather mild N q-dependent rescaling of our
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Figure 19. Mass of a string stretching from the origin of a zero-temperature solution to the

position of the LP as a function of the charge density, normalized to the value at Nq = 0.

results. This would slightly distort our phase diagram but it would leave unchanged all the

qualitative conclusions, which we now proceed to discuss.

One of the most interesting outcomes of our analysis is the presence of instabilities in

our system, some of which are summarised in figure 2. The most relevant ones are those

that are present at low temperature, since they are the least sensitive to the UV completion

of the theory.

One of these instabilities is associated to the negative speed of sound squared, c2
s < 0,

that is present in Region III of figure 2. This indicates a dynamical instability for the

hydrodynamic sound mode, whose dispersion relation takes the form

ωs(k) ' ± cs k +O(k2) . (6.3)

Negativity of c2
s implies that cs is purely imaginary. This indicates that, if perturbed by a

small-amplitude fluctuation with sufficiently long wavelength, the system will develop an

inhomogeneous profile that will initially grow exponentially in time as e|cs|kt. Presumably,

when the non-linearities become important the system will settle down to an equilibrium,

inhomogeneous configuration in which translation invariance is broken spontaneously. It

would be interesting to identify the endpoint of this instability under dynamical evolution

along the lines of [32, 33]. Note that this is related, but not identical, to identifying all

the possible equilibrium, inhomogeneous states of the system. For example, the latter may

include states with domains of finite characteristic size, namely crystalline phases, as well as

phase-separated configurations in which two semi-infinite, homogenous phases separated by

an interface coexist. From a thermodynamic viewpoint one of these inhomogeneous states

will be absolutely preferred, rendering the rest metastable. However, the lifetime of some of

these metastable states may be very long in general, and in particular this will be the case

in our large-Nc limit. Moreover, to which final state the initial unstable configuration will

evolve is a dynamical question that depends on the “landscape” of configurations above

and beyond the purely equilibrium ones.
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Similar considerations apply to the instability associated to the negative charge suscep-

tibility, χ < 0. As explained in appendix E, this is related to the charge diffusion constant

through

D =
σ

χ

E + P

c2
s T CQ

. (6.4)

In this expression σ is the electrical conductivity, which must be positive in order for the

divergence of the entropy current of first-order hydrodynamics to be non-negative, i.e. in

order for the second law of thermodynamics to hold. A negative value of D indicates a

dynamical instability towards charge clustering (anti-diffusion), thus also generating in-

homogeneities. Our numerical results allow us to establish that this is the situation in a

subregion of Region II in figure 2, where all the factors in (6.4) are positive except for χ,

but they do not allow us to establish definitively whether c2
s becomes negative in some small

subregion of Region II. If this were the case then D would be positive in this subregion.

In contrast to Region II, D is positive in most of Region III, since there all factors

are positive except for both χ and c2
s. Our numerical resolution allows us to establish the

existence of a subregion of Region III where E+P becomes negative. Whenever E+P < 0

in Region III one finds consequently, from eq. (6.4), that D < 0, thus indicating a dynamical

instability in the charge diffusion channel. This change of sign of the enthalpy is visible in

figure 13 but not in figure 2 because it lies at charge densities larger than those shown in

the latter figure.

It is interesting to note that the subregions where E + P < 0 suffer from a further

hydrodynamic instability in addition to those associated to the negativity of c2
s and/or D.

Indeed, the transverse momentum density in a plasma (the density of momentum pointing

orthogonally to the direction of propagation of the wave) obeys a diffusion equation with

diffusion constant given by [36]

DP =
η

E + P
. (6.5)

Since η must be positive for the same reason as the electrical conductivity σ, we see that

DP becomes negative if E+P < 0, leading to an instability towards transverse momentum

clustering.

A contour plot of the combination E + 3P is shown in figure 20. This quantity is

interesting because it would control the backreaction of the fluid on the spacetime metric

if we were to couple the fluid to dynamical gravity. As is well known in the context of

Cosmology, the condition for accelerated expansion is E + 3P < 0. In our context this

is not particularly relevant because the phase where this condition is satisfied is unstable.

However, it is amusing to consider the question of whether a stable quark-matter phase

with E+3P < 0 may exist, and if so what would be the possible consequences if this phase

were to be realised in e.g. the interior of a neutron star.

To conclude, we reiterate that some of the instabilities that we have identified suggest

the possible existence of quark matter crystalline phases in our model, but establishing this

definitively requires further analysis. We hope to report on these issues in the near future.
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A Supergravity with sources

In this appendix we present the action and equations of motion we solve for. The ideas

presented here follow closely the ones given in [34], and the full equations of motion for a

generic setup were presented in [25]. The presentation of the appendix is the IIB counter-

part to the IIA setup given in a corresponding appendix in [20].

The starting point is type IIB supergravity in the democratic formulation [35]

S =
1

2κ2

∫
e−2φ

(
R ∗ 1 + 4dφ ∧ ∗dφ− 1

2
H ∧ ∗H

)
− 1

4
(G1 ∧ ∗G1 + G3 ∧ ∗G3 + G5 ∧ ∗G5 + G7 ∧ ∗G7 + G9 ∧ ∗G9) ,

(A.1)
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where the Ramond-Ramond (RR) field strengths are defined as

Gn = dCn−1 −H ∧ Cn−3 (A.2)

with n = 1, 3, 5, 7, 9 and C−2 = 0. The equations of motion following from this action are

for the RR field strengths
d ∗ G1 = −H ∧ ∗G3 ,

d ∗ G3 = −H ∧ ∗G5 ,

d ∗ G5 = −H ∧ ∗G7 ,

d ∗ G7 = −H ∧ ∗G9 ,

d ∗ G9 = 0 ,

(A.3)

and the for the Neveu-Schwarz (NS) field

d
(
e−2φ ∗H

)
=

1

2
d (C0 ∧ ∗G3 + C2 ∧ ∗G5 + C4 ∧ ∗G7 + C6 ∧ ∗G9)

=
1

2
(G1 ∧ ∗G3 + G3 ∧ ∗G5 + G5 ∧ ∗G7 + G7 ∧ ∗G9) .

(A.4)

In the last line we have used the equations of motion (A.3). The duality relations to be

imposed after the equations of motion have been obtained are

G9 = ∗G1 , G7 = − ∗ G3 , G5 = ∗G5 , (A.5)

with ∗∗ = 1 for odd forms. Then the equations of motion for G7 and G9 become the

Bianchi identities for G1 and G3 (as usual G5 is self-dual and its equation of motion is its

Bianchi identity).

Add now the sources piece coming from the D7-branes. The WZ term gives a linear

coupling of the worldvolume fields to the RR forms

SWZ =
1

2κ2

∫
1

2

(
C8 − C6 ∧ F +

1

2
C4 ∧ F2 − 1

6
C2 ∧ F3 +

1

24
C0F4

)
∧ Γ . (A.6)

Here Γ is a two-form that describes the distribution of the D7-branes and

F = B + 2π`2sA , (A.7)

with A the BI field living in the worldvolume of the D7-branes. Note that

dF = H . (A.8)

The linear source in the WZ term modifies the equations of motion for the RR forms which

now read (we denote by Fn the RR field strengths in the presence of sources, as opposed

to the unsourced Gn ones)

d ∗ F1 = −H ∧ ∗F3 +
1

24
F4 ∧ Γ ,

d ∗ F3 = −H ∧ ∗F5 −
1

6
F3 ∧ Γ ,

d ∗ F5 = −H ∧ ∗F7 +
1

2
F2 ∧ Γ ,

d ∗ F7 = −H ∧ ∗F9 −F ∧ Γ ,

d ∗ F9 = Γ .

(A.9)
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In order to impose the equivalent duality relations to (A.5), i.e.

F9 = ∗F1 , F7 = − ∗ F3 , F5 = ∗F5 , (A.10)

we must modify the definitions of the RR field strengths to

F1 = G1 + γ ,

F3 = G3 + F ∧ γ ,

F5 = G5 +
1

2
F2 ∧ γ ,

F7 = G7 +
1

6
F3 ∧ γ ,

F9 = G9 +
1

24
F4 ∧ γ ,

(A.11)

where γ is a one-form satisfying

dγ = −Γ . (A.12)

In section 2 we have written

γ = Qf η , Γ = 2Qf J . (A.13)

With this definition of the field strengths the equation of motion for the NS forms gets

two extra contributions with respect to the one derived in eq. (A.4), first from the explicit

F terms in the WZ action (A.6) and second from the implicit F terms in the definitions

of the Fn in (A.11):

d
(
e−2φ ∗H

)
=

1

2
d (C0 ∧ ∗G3 + C2 ∧ ∗G5 + C4 ∧ ∗G7 + C6 ∧ ∗G9)

+
1

2

(
∗F3 + F ∧ ∗F5 +

1

2
F2 ∧ ∗F7 +

1

6
F3 ∧ ∗F9

)
∧ γ

+
1

2

(
C6 −F ∧ C4 +

1

2
F2 ∧ C2 −

1

6
F3 ∧ C0

)
∧ Γ

+ DBI-terms

=
1

2
(F1 ∧ ∗F3 + F3 ∧ ∗F5 + F5 ∧ ∗F7 + F7 ∧ ∗F9)

+ DBI-terms ,

(A.14)

where in the last equality we have used the equations of motion (A.9). The equation

of motion for the dilaton and the metric can be obtained from the same democratic-

formulation action, adding the DBI piece. Coming back to the non-democratic formulation

of supergravity, the equations of motion for the different Fn and H fields, as well as the

ones for the dilaton and the metric, can be obtained from the ten-dimensional action found

in Einstein frame in [25], where a five-dimensional reduction over the compact manifold

preserving the SU(2) structure of the Sasaki-Einstein manifold is given.
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B Equations of motion for rescaled variables

In this section we write the equations of motion for our ansatz explicitly, for string frame

metric. We give the scaled quantities described in section 2.3, and for simplicity we omit

all bars in the different variables.

The scaled electric field satisfies

A′t =
eφ
√
−GttGrr (N q + B)√

G3
xxG

2
b Gf + e2φ(N q + B)2

, (B.1)

and the B equation of motion is

∂y

( √
−Gtt√
GrrGf

B′√
G3
xx

)
− 8

√
−GttGrrGf√
G3
xxG

4
b

B +
2eφ
√
−GttGrr(N q + B)√

G3
xxG

2
bGf + e2φ(N q + B)2

= 0 . (B.2)

In order to write the remaining equations of motion let us define the combination

FA,B,C,D,E =
e2φ

G3
xxG

4
bGf

(
AG2

bB′2 +
B

2
G3
xxGrrG

4
b +

C

2
G3
xxGrr

+ 8DN
2
qGrrG

4
bGf + 8EGrrGfB2

)
.

(B.3)

In terms of this, the metric and dilaton equations are

0 =G′′tt+log′

[
e−2φ

√
G3
xxG

4
bGf√

−GttGrr

]
G′tt+F1,−1,−1,−1,1Gtt−

2eφGttGrr√
G3
xxG

4
bGf

G3
xxG

2
bGf+2e2φ(Nq+B)2√

G3
xxG

2
bGf+e2φ(Nq+B)2

,

0 =G′′xx+log′

[
e−2φ

√
−GttG2

xxG
4
bGf√

Grr

]
G′xx+F−1,−1,−1,1,−1Gxx+

2eφG
5/2
xx GrrGf√

G3
xxG

2
bGf+e2φ(Nq+B)2

,

0 =G′′b +log′

[
e−2φ

√
−GttG3

xxG
2
bGf√

Grr

]
G′b+

(
F0,−1,1,−1,−1+4

Gf Grr
G2
b

−12
Grr
Gb

)
Gb ,

0 =G′′f+log′

[
e−2φ

√
−GttG3

xxG
4
b√

GfGrr

]
G′f+

(
F−1,1,1,−1,1−8

Gf Grr
G2
b

)
Gf−

2eφG
3/2
xx GrrG

3/2
f√

G3
xxG

2
bGf+e2φ(Nq+B)2

,

0 =φ′′+log′

[
e−2φ

√
−GttG3

xxG
4
bGf√

Grr

]
φ′+F0,2,0,1,1−

2eφGrr√
G3
xxG

4
bGf

2G3
xxG

2
bGf+e2φ(Nq+B)2√

G3
xxG

2
bGf+e2φ(Nq+B)2

,

(B.4)

together with a first-order constraint

0 = φ′ log′
[
e−φ
√
−GttG3

xxGrrG
4
bGf

]
− 1

2
log′

[
G3/2
xx

]
log′

[√
−GttGxxG4

bGf

]
− 1

2
log′

[
G2
b

]
log′

[√
−GttG3/2

b Gf

]
− 1

2
log′

[√
−Gtt

]
log′

[√
Gf

]
+

1

4
F−1,−1,−1,−1,1

−
Gf Grr

G2
b

+
6Grr
Gb
−
eφGrr

√
G3
xxG

2
bGf + e2φ(N q + B)2√
G3
xxG

4
bGf

. (B.5)
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C A probe in the asymptotic geometries

In this appendix we provide more evidence supporting our claim that the zero-temperature

IR geometry is dominated by the asymptotic solution (3.10) and the UV by the LP geom-

etry (3.4). To this end we note that the addition of a (charged) probe D7-brane in these

solutions does not have an important backreaction on the background configurations in the

radial regimens of interest, i.e. the origin for the IR geometry and the boundary for the

UV one. An analogous discussion for a lower-dimensional case was given in ref. [20], and

we provide here a slightly different (but equivalent) argument.

Consider a set of nf probe D7-branes with a worldvolume gauge field, a, turned on.

The action describing this set of branes is (in string frame)

SD7 = −TD7 nf

∫
d8ζ e−φ

√
− det (P[G] + 2π`2s da+ P[B])

+ TD7 nf

∫
P[C8]− P [C6] ∧

(
2π`2s da+ P[B]

)
,

(C.1)

where TD7 nf is the total tension, and we have assumed that there is a non-trivial potential

C6 in the background of the form given by eq. (2.17):

C6 ⊃ B dx1 ∧ dx2 ∧ dx3 ∧ J ∧ η . (C.2)

We also allow for a non trivial NS potential, which we will take in the Brt directions to be

aligned with da = a′t(r)dr ∧ dt.

For a massless probe brane the embedding profile is a constant in the transverse direc-

tions to the brane. Therefore, working in the static gauge we can write the probe action as

SD7 =

∫
d3x dt dr

−√H1

√
1−H2

(
a′t +

Brt
2π`2s

)2

+H3 −H4

(
a′t +

Brt
2π`2s

) , (C.3)

where we have defined the following functions

H1 = −(TD7 nf V3)2 e−2φGttGrrG
3
xxG

2
b Gf ,

H2 =
(
2π`2s

)2
(−GttGrr)−1 ,

H3 = TD7 nf V3
Qf

2

√
−GttG3

xxGrrG
4
b√

Gf
,

H4 = TD7 nf V3 2π`2s B ,

(C.4)

with V3 the volume of the 3-cycle wrapped by the probe branes and the metric functions

those of the generic metric (2.8). The function H3 comes from C8 via Hodge-dualization

of F1 = Qf η and H4 has its origin in C6.

The electric field on the worldvolume of the D7-branes has a first constant of motion

given by
δSD7

δa′t
= nq ⇒ a′t +

Brt
2π`2s

=
nq +H4

√
H2

√
H1H2 + (nq +H4)

2 , (C.5)
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whose backreacted version for the ansatz considered in this paper can be found in eq. (2.22).

Working at fixed charge density nq we can use the former expression to eliminate a′t in favor

of nq in the action by performing a Legendre transform. This results in

S̃D7 = SD7−
∫

dt d3x dr
δSD7

δa′t
a′t =

∫
dt d3x dr

(
−
√
H1H2 + (nq +H4)2

√
H2

+H3 + nq

Brt
2π`2s

)
.

(C.6)

C.1 Charged flavorless setup and the IR geometry

Consider now the behavior of (C.6) in the limit nf → 0, but keeping nq finite. This is the

limit described in section 3.3. The Legendre-transformed action becomes

S̃D7 →
∫

dt d3x dr

(
− nq√
H2

+ nq

Brt
2π`2s

)
= − 1

2π`2s

∫
dt dr

√
−GttGrr|Ξ|1/2+

1

2π`2s

∫
B∧Ξ ,

(C.7)

and we recognize this as a smeared Nambu-Goto action where Ξ = nq dx1 ∧ dx2 ∧ dx3 is

a density of fundamental strings, extended in the radial direction and distributed on the

spatial ones. The same limit can clearly be achieved asymptotically if one works in a radial

regime of a geometry such that

H1H2 → 0 ,
√
H2H3 → 0 , H4 → 0 . (C.8)

The solution (3.10) satisfies this criterium when r → 0, suggesting that near the origin

this is a valid asymptotic solution. Actually, one should consider the first correction to the

function B = 0 to ensure the requirement H4 → 0 near the origin, i.e. that the leading

correction to this function is vanishing when r → 0 (otherwise the probe approximation

would fail). In eq. (3.13) we show that indeed B → 0 in the backreacted setup.

C.2 Supersymmetric chargeless solution and UV geometry

From the probe argument (C.6) we would expect that the supersymmetric solution is valid

asymptotically if near the Landau pole (nq + H4)/(H1H2) → 0, provided the NS form

vanishes. Plugging all the values from the asymptotic expansion (3.6) in the Hi functions

we obtain
nq +H4

H1H2
= (nq +H4) r56/5 , (C.9)

which near the Landau pole does not go to zero unless there is a precise cancellation between

H4 and the charge density. In other words, it is not possible to obtain a parametrically

small quotient of the charge versus D7-tension effects (such that the charge is subdominant

in the UV) by just going to sufficiently large values of r. Gravitationally, this is an effect

of having the end of the geometry at a finite proper distance from any point in the bulk.

We argue now that the setup we have considered automatically tunes itself to avoid this

issue: the function B goes to a constant value near the Landau pole that cancels exactly the

contribution from the charge density, such that the backreacted version of (C.9) indeed goes

to zero as one approaches the Landau pole. To see this take the full system of backreacted

equations of motion, given in appendix B, and expand around the supersymmetric solution.
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In particular one can consider a perturbative expansion in which Qst = εQst and B = εB,

where ε is a book-keeping parameter to denote the inclusion of a small charge density in the

supersymmetric setup. At first order in ε the equation of motion for B decouples and reads

B′′ + 2
(

3− 2e2(f−g)
)
B′ + 2e2(f−g)

(
Qf e

φ − 4e2(f−g)
)
B +

QcQst

2
eφ+2(f−g) = 0 , (C.10)

with all functions evaluated in the asymptotic solution (3.6). Close to the Landau pole we

can approximate the equation by

B′′ + 6B′ + 2 eφ+2(f−g)

(
Qf B +

QcQst

4

)
= O(r−4) , (C.11)

and the particular solution is given at leading order by a constant

Bparticular = −QcQst

4Qf

+O(r−4) . (C.12)

By plugging this value in (2.22), which is the backreacted version of (C.6), we observe that

at the Landau pole A′t → 0, which allows us to construct the asymptotic expansion (3.6)

around the supersymmetric solution.

D Scaling solution and IR geometry

In this appendix we show that the configuration in eq. (3.10) is an asymptotic solution

in the presence of a finite number of flavors. One can perform an expansion of the full

equations for small Qf, and solve order by order. At order O(Q0
f ) we have eq. (3.10) with

B = 0 as a solution. To find the first order correction we expand the functions as

GZ(u) = G
(0)
Z (r)

(
1 +Qf γZ(r) +O(Q2

f )
)
,

eφ(u) = eφ
(0)(r)

(
1 +Qf ϕ(r) +O(Q2

f )
)
,

B(u) = Qf β(r) +O(Q2
f ) ,

(D.1)

where the metric components are Z = {tt, xx, rr, b, f} and the superindex (0) refers to the

solution (3.10). The equation of motion for β(u) decouples and has the solution

β(u) = − 25 33

343/2

1

Q3
st

r12

L12
+ β1 r

10 + β2 r
−8 , (D.2)

with β1,2 integration constants. For the Qf-expansion to be well defined we need to set

β2 = 0 and we observe that as r → 0 the first-order correction β vanishes, and in particular

the explicit solution to the non-homogeneous part of the equation goes like r12. The

remaining first-order corrections satisfy a coupled system of equations, and the solutions

are a combination of eight different modes which we group in pairs as

γZ(r) =
∑
i,±

γi,±Z r∆i,± , ϕ(r) =
∑
i,±

ϕi,±r∆i,± , (D.3)
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with i = 1, 2, 3, 4. For fixed i and sign ±, the factors γi,±Z and ϕi,± are not all independent,

but given in terms of just two free parameters, with one of these parameters corresponding

to a gauge fixing of the radial coordinate.

We have grouped the expansion modes in pairs of fixed i. The two powers characterising

each of the pairs add up to ∆i,++∆i,− = −10. The first of these pairs is given by the values

∆1,± = −5± 5 , (D.4)

the ∆1,+ = 0 mode corresponding to a rescaling of time and the ∆1,− = −10 mode corre-

sponding to turning on a temperature, with the corresponding non-vanishing coefficients

given by

γ1,−
tt = −γ1,−

rr , ϕ1,− = 2γ1,−
f = 2γ1,−

b =
6

5
γ1,−
xx , (D.5)

where, once again, one of the two undetermined coefficients corresponds to a fixing of the

radial coordinate. As seen from the negative value of the ∆1,− coefficient this is a rele-

vant mode that modifies the IR geometry; since in this appendix we are interested in the

zero temperature solutions, with the Lifshitz geometry in the IR modified just by irrele-

vant deformations, we take the coefficients multiplying the ∆1,− modes to be zero. The

mode ∆1,+ = 0 is associated to a free γ1,+
tt coefficient, corresponding to the choice of ct

in eq. (3.10).

The remaining three pairs appearing in the solution are given by

∆2,± = −5±
√

5

17

(
917− 8

√
1279

)
,

∆3,± = −5±
√

5

17

(
917 + 8

√
1279

)
,

∆4,± = −5±
√

145 .

(D.6)

The corresponding coefficients γi,±Z , ϕi,± can be determined analytically. We give here only

the relations between the two coefficients in the compact part of the manifold

γ2,±
f = γ2,±

b , γ3,±
f = γ3,±

b , γ4,±
f = −4γ4,±

b +
5

2
ϕ4,± . (D.7)

The modes ∆2,± and ∆3,± appeared already in the analysis made in [15, 18]. In particular

γ2,±
f = γ2,±

b and γ3,±
f = γ3,±

b , which guarantees that these deformations do not contribute to

the squashing of the five-dimensional compact manifold, preserving the full isometry group.

However, γ4,±
f = −4γ4,±

b + 5
2ϕ

4,± and these are the modes responsible for the breaking of the

symmetry by means of the squashing of the compact manifold allowed in our ansatz (2.8),

which is nothing but a consequence of the presence of flavor in the setup. Considering just

the irrelevant deformations (those with ∆i,± > 0) to have the Lifshitz solution (3.10) in

the IR implies choosing the free parameters so that they cancel the ∆i,− modes, allowing

only the ∆i,+ ones, with i = 2, 3, 4.

Thus, we have taken to zero all relevant deformations of the geometry, meaning that

our perturbation holds always close to the origin, even if we relax the initial condition

Qf � 1 that lead us to the perturbation equations we just solved. In other words, we
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have just proven from the supergravity equations of motion with sources that there is a

solution near the origin that asymptotes to the (3.10) solution, with corrections given by

the 5 irrelevant deformations ∆2,+, ∆3,+, ∆4,+, ct and β1.

E Charge diffusion constant

In this section we provide a short derivation of eq. (6.4). We start with the expression

derived on page 27 of [36]:

D =
σ (α2β1 − α1β2)

c2
s

, (E.1)

where σ is the electric conductivity and αi, βi are thermodynamic derivatives defined in [36].

Using the expressions at the bottom of page 26 of that reference one can rewrite this as

D =
σ

c2
s

(E + P )2

detχab
, (E.2)

where χab is the susceptibility matrix

χab =


T
(
∂E
∂T

)
µ/T

0
(
∂E
∂µ

)
T

0 E + P 0

T
(
∂Qst

∂T

)
µ/T

0
(
∂Qst

∂µ

)
T

 . (E.3)

Note that χ33 = χ as defined in the first equation in (5.2). Using thermodynamic identities

one can show that

χ33 = H22 , (E.4)

χ13 = TH12 + µH22 , (E.5)

χ11 = T 2H11 + µ2H22 + 2TµH12 , (E.6)

where Hij are the components of the Hessian (5.1). It follows that the determinants are

related through

detχab = T 2 (E + P ) detH , (E.7)

and therefore

D =
σ

c2
s

E + P

T 2 detH
. (E.8)

Using eq. (5.6) we finally arrive at

D =
σ

χ

E + P

c2
s T CQ

, (E.9)

which gives the Einstein relation in the presence of a finite chemical potential and charge

density. Note that in the neutral case we have

µ = Qst = 0 , E + P = Ts , c2
s = s/CQ , (E.10)

and therefore D reduces to the familiar expression

D =
σ

χ
. (E.11)
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F Super-critical solutions

In the main part of the paper we have limited our discussion to solutions with
√

2N q below

a critical value,
√

2N q <
√

2N
∗
q ' 10.16. The reason is that all these sub-critical solutions

share a common IR given by the Lifshitz asymptotics. For completeness we will present

here the results for integrations with
√

2N q >
√

2N
∗
q. To construct them, we follow the

same integration strategy as before (see section 3.4), i.e. we start with a solution with

relatively large value of rh at fixed N q, and then decrease the radius of the horizon step by

step using the previous solution as a seed. For low values of rh we observe a dramatically

different behavior in the IR compared to the sub-critical case. In particular, the super-

critical solutions do not flow to Lifshitz in the IR, but to a different scaling solution with

negative specific heat.

The IR parameters of the expansion (3.7) extracted from the numerical super-critical

solutions are shown in figure 21. We observe that for large values of rh all the curves

converge to a single one, reflecting the fact that the leading UV behavior is controlled

by the neutral solution. On the other hand, for small values of the horizon radius these

solutions exhibit a scaling behavior different from the Lifshitz scaling observed for sub-

critical solutions presented in section 3.4. This IR scaling behavior takes the form

eφ ∼ r4 , eg ∼ r2, ef ∼ r−2 , B ∼ constant < 0 , (for rh → 0) . (F.1)

This can be easily seen in figure 22, where we have plotted the functions B and

Rφ(r) = r
∂r e

φ

eφ
, Rg(r) = r

∂r e
g

eg
, Rf(r) = r

∂r e
f

ef
, (F.2)

for
√

2N q = 11 and rh/
√

2 = 0.5. The behavior of the blackening function b near the

origin when rh → 0 is

b ∼ constant > 0 , (for rh → 0) , (F.3)

indicating that Lorentz symmetry is restored in the deep IR for super-critical solutions in

the limit in which the horizon disappears. The determination of the horizonless metric in

the IR depends on the function c appearing in the grr component of our ansatz. This func-

tion was determined algebraically but, in the present situation, one needs to know what are

the corrections to the scalings (F.1) and (F.3) to obtain its radial scaling c ∼ rc analyti-

cally.7 Irrespective of the actual value of this power c, the metric takes the asymptotic form

of a hyperscaling-violating metric with parameter θ > 3, which is compatible with the null

energy condition. This in turn implies a thermodynamic instability with negative specific

heat, since the entropy scales with the temperature as s ∼ T 3−θ. Note that T diverges as

rh → 0, but the entropy density tends to zero. For this reason rh, but not T , is a good

proxy for the energy scale at which the solution is being probed. In particular, the limit

rh → 0 can be thought as the limit in which the solution approaches the ground state of the

theory. In this limit the super-critical solutions possess a curvature singularity at r = 0.

7Note that, for the super-critical solutions that we have shown here, c is large but finite because rh > 0,

and we have explicitly checked that the solutions are numerically stable within our numerical precision.
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Figure 21. IR coefficients as functions of the horizon radius for different values of
√

2Nq >
√

2N
∗
q

(see legend). For comparison, we also plot the coefficients for the sub-critical solution with√
2Nq = 10.

The fact that Lorentz symmetry is restored in the IR geometry of the super-critical

solutions in the limit rh → 0 suggests that the IR description is no longer dominated by

the backreaction of the charge density, or equivalently by the fundamental strings dissolved

inside the flavor D7-branes. This is further confirmed by the behavior of the two IR

parameters of the metric, efh and egh . Since they scale differently the compact manifold

remains squashed even at very small values of rh, as opposed to the situation for sub-
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Figure 22. Radial profile of B and local scaling of eφ, ef and eg as a function of the radius.

critical solutions. Given that the squashing is caused by the D7-branes, this suggests that

the tension of the branes is not subdominant in the IR for super-critical solutions. This is

further supported by revisiting the conditions (C.8) for the particular scaling of eq. (F.1).

We have checked that the last of these conditions, namely H4 ∝ B → 0, is not satisfied

in the IR of the super-critical solutions. One finds instead that B approaches a negative

constant. Since the source for this function is supported on the flavor branes, as explained

in the paragraph leading to (2.17), we conclude that for these values of the charge density

the flavor has an important effect in the IR.

The UV parameters appearing in the expansion (3.6), obtained from our integration in

the super-critical cases, are presented in figure 23. Once again we observe that all curves

approach the same one at large values of rh, since the neutral solution controls the UV,

whereas at low values of the horizon radius there is a dependence on N q.

We now turn to the thermodynamic properties of the super-critical solutions. In

figure 24(left) we present the temperature as a function of the horizon radius, and in

figure 24(right) we show the entropy as a function of the temperature. As observed in this

figure, the temperature is a double-valued function of the radius of the horizon: at fixed

charge there is a small and a large black hole corresponding to the same temperature, and

temperatures below a certain (N q-dependent) critical one, T∗(N q), are not realized in our

solutions.
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Figure 23. UV coefficients as functions of the radius of the horizon (see legend in figure 21).

The small black holes are described near the IR by the scaling solution discussed around

eqs. (F.1) and (F.3), and they are thermodynamically unstable since the entropy decreases

with the temperature, making the specific heat negative. For the large black holes this also

occurs if the temperature is sufficiently high, reflecting the presence of the Landau pole in

the UV, as explained in section 3.1. For a small range of temperatures just above T∗(Qst)

the large black hole solutions possess a positive specific heat and therefore are not locally

thermodynamically unstable against energy density fluctuations at fixed charge density.

We have not examined whether other possible instabilities are present.
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of the temperature.
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Figure 25. Free energy of the super-critical solutions.

In figure 25 we plot the free energy associated to several super-critical solutions. For

comparison we also show the free energy of one sub-critical solution with
√

2N q = 10.

For super-critical solutions we see the cusp in the free energy typical of a first-order phase

transition. This suggests the existence of new additional solutions that may be locally

stable and thermodynamically preferred at low temperatures, but we have not been able

to obtain them with our numerical strategy.
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