184 research outputs found
Renal Arterial Calibre after Acute Unilateral Ureteric Occlusion
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72406/1/j.1440-1673.1970.tb02908.x.pd
Development and Evaluation of Content Validity and Acceptance of a Multidomain Intervention Module for Reversal of Cognitive Frailty Among Older Adults
Norhayati Mustafa Khalid,1 Pavapriya Ponvel,1 Azianah Mohamad Ibrahim,1 A’isyah Mohd Safien,1 Nurul Hidayah Md Fadzil,1 Devinder Kaur Ajit Singh,1 Arimi Fitri Mat Ludin,1 Norhayati Ibrahim,1 Ponnusamy Subramaniam,1 Hasnah Haron,1 Roslee Rajikan,1 Divya Vanoh,2 Suzana Shahar1 1Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; 2Dietetics Programme, School of Health Sciences, Universiti Sains Malaysia, Kelantan, MalaysiaCorrespondence: Suzana Shahar, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia, Tel +60 392897163, Email [email protected]: There is a limited availability of multidomain interventions that target cognitive frailty. Thus, the aim of the present study was to develop and evaluate the content validity and acceptance of the multidomain intervention module to reverse cognitive frailty among older adults (iAGELESS).Patients and Methods: This study was conducted in two phases: Phase I included the development of the multidomain intervention module iAGELESS and evaluation of content validity, while Phase II consisted of evaluating the acceptance of the module among 18 healthcare and social care providers, 13 older adults with cognitive frailty, and 13 caregivers. Content validity index (CVI) was used to quantify the content validity. Respondents completed a questionnaire which consisted of information on sociodemographic, followed by module acceptance evaluation with respect to content, terminologies, and graphics. The data was then analyzed descriptively.Results: A multidomain intervention module, iAGELESS was developed. The module was found to have appropriate content validity (overall CVI = 0.83). All the caregivers, 92% of older adults with cognitive frailty and 83% of healthcare and social care providers were satisfied with the overall content of the module. More than 50% of those who accepted the module had satisfactory consensus on the ease of the terminologies, length of sentences, pictures, information, color, and font size included in the module.Conclusion: The iAGELESS module demonstrated good content validity and was well accepted, thus warranting its utilization in future studies to determine its effectiveness in reversing cognitive frailty among older adults.Keywords: aging, cognitive frailty, multidomain intervention module, older adults, reversa
Ctp1 and the MRN-Complex Are Required for Endonucleolytic Rec12 Removal with Release of a Single Class of Oligonucleotides in Fission Yeast
DNA double-strand breaks (DSBs) are formed during meiosis by the action of the topoisomerase-like Spo11/Rec12 protein, which remains covalently bound to the 5′ ends of the broken DNA. Spo11/Rec12 removal is required for resection and initiation of strand invasion for DSB repair. It was previously shown that budding yeast Spo11, the homolog of fission yeast Rec12, is removed from DNA by endonucleolytic cleavage. The release of two Spo11 bound oligonucleotide classes, heterogeneous in length, led to the conjecture of asymmetric cleavage. In fission yeast, we found only one class of oligonucleotides bound to Rec12 ranging in length from 17 to 27 nucleotides. Ctp1, Rad50, and the nuclease activity of Rad32, the fission yeast homolog of Mre11, are required for endonucleolytic Rec12 removal. Further, we detected no Rec12 removal in a rad50S mutant. However, strains with additional loss of components localizing to the linear elements, Hop1 or Mek1, showed some Rec12 removal, a restoration depending on Ctp1 and Rad32 nuclease activity. But, deletion of hop1 or mek1 did not suppress the phenotypes of ctp1Δ and the nuclease dead mutant (rad32-D65N). We discuss what consequences for subsequent repair a single class of Rec12-oligonucleotides may have during meiotic recombination in fission yeast in comparison to two classes of Spo11-oligonucleotides in budding yeast. Furthermore, we hypothesize on the participation of Hop1 and Mek1 in Rec12 removal
Comparative genomics of drug resistance in <i>Trypanosoma brucei rhodesiense</i>
Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2Â years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine
Iron: a target for the management of Kaposi's sarcoma?
BACKGROUND: Kaposi's sarcoma (KS) is a mesenchymal tumour associated with human herpesvirus-8 infection. However, the incidence of human herpesvirus-8 infection is far higher than the prevalence of KS, suggesting that viral infection per se is not sufficient for the development of malignancy and that one or more additional cofactors are required. DISCUSSION: Epidemiological data suggest that iron may be one of the cofactors involved in the pathogenesis of KS. Iron is a well-known carcinogen and may favour KS growth through several pathways. Based on the apoptotic and antiproliferative effect of iron chelation on KS cells, it is suggested that iron withdrawal strategies could be developed for the management of KS. Studies using potent iron chelators in suitable KS animal models are critical to evaluate whether iron deprivation may be a useful anti-KS strategy. SUMMARY: It is suggested that iron may be one of non-viral co-factors involved of KS pathogenesis and that iron withdrawal strategies might interfere with tumour growth in patients with KS
A New Fluorescence-Based Method Identifies Protein Phosphatases Regulating Lipid Droplet Metabolism
In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs) and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4), type 2A phosphatase and its related regulator (pph21 and sap185), type 2C protein phosphatases (ptc1, ptc4, ptc7) and dual phosphatases (pps1, msg5) were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190) were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive) in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis
Molecular Blocking of CD23 Supports Its Role in the Pathogenesis of Arthritis
BACKGROUND: CD23 is a differentiation/activation antigen expressed by a variety of hematopoietic and epithelial cells. It can also be detected in soluble forms in biological fluids. Initially known as the low-affinity receptor for immunoglobulin E (Fc epsilonRII), CD23 displays various other physiologic ligands such as CD21, CD11b/c, CD47-vitronectin, and mannose-containing proteins. CD23 mediates numerous immune responses by enhancing IgE-specific antigen presentation, regulating IgE synthesis, influencing cell differentiation and growth of both B- and T-cells. CD23-crosslinking promotes the secretion of pro-inflammatory mediators from human monocytes/macrophages, eosinophils and epithelial cells. Increased CD23 expression is found in patients during allergic reactions and rheumatoid arthritis while its physiopathologic role in these diseases remains to be clarified. METHODOLOGY/PRINCIPAL FINDINGS: We previously generated heptapeptidic countrestructures of human CD23. Based on in vitro studies on healthy and arthritic patients' cells, we showed that CD23-specific peptide addition to human macrophages greatly diminished the transcription of genes encoding inflammatory cytokines. This was also confirmed by significant reduction of mediator levels in cell supernatants. We also show that CD23 peptide decreased IgE-mediated activation of both human and rat CD23(+) macrophages. In vivo studies in rat model of arthritis showed that CD23-blocking peptide ameliorates clinical scores and prevent bone destruction in a dose dependent manner. Ex-vivo analysis of rat macrophages further confirmed the inhibitory effect of peptides on their activation. Taken together our results support the role of CD23 activation and subsequent inflammatory response in arthritis. CONCLUSION: CD23-blocking peptide (p30A) prevents the activation of monocytes/macrophages without cell toxicity. Thus, targeting CD23 by antagonistic peptide decreases inflammatory markers and may have clinical value in the treatment of human arthritis and allergic reactions involving CD23
- …