48 research outputs found

    Bell-state preparation for electron spins in a semiconductor double quantum dot

    Full text link
    A robust scheme for state preparation and state trapping for the spins of two electrons in a semiconductor double quantum dot is presented. The system is modeled by two spins coupled to two independent bosonic reservoirs. Decoherence effects due to this environment are minimized by application of optimized control fields which make the target state to the ground state of the isolated driven spin system. We show that stable spin entanglement with respect to pure dephasing is possible. Specifically, we demonstrate state trapping in a maximally entangled state (Bell state) in the presence of decoherence.Comment: 9 pages, 4 figure

    Electrical control of ferromagnetism in Mn-doped semiconductor heterostructures

    Full text link
    The interplay of tunneling transport and carrier-mediated ferromagnetism in narrow semiconductor multi-quantum well structures containing layers of GaMnAs is investigated within a self-consistent Green's function approach, accounting for disorder in the Mn--doped regions and unwanted spin-flips at heterointerfaces on phenomenological ground. We find that the magnetization in GaMnAs layers can be controlled by an external electric bias. The underlying mechanism is identified as spin-selective hole tunneling in and out of the Mn-doped quantum wells, whereby the applied bias determines both hole population and spin polarization in these layers. In particular we predict that, near resonance, ferromagnetic order in the Mn doped quantum wells is destroyed. The interplay of both magnetic and transport properties combined with structural design potentially leads to several interrelated physical phenomena, such as dynamic spin filtering, electrical control of magnetization in individual magnetic layers, and, under specific bias conditions, to self-sustained current and magnetization oscillations (magneticmulti-stability). Relevance to recent experimental results is discussed.Comment: 10 pages, 8 figure

    Spin entanglement using coherent light and cavity-QED

    Full text link
    A scheme for probabilistic entanglement generation between two distant single electron doped quantum dots, each placed in a high-Q microcavity, by detecting strong coherent light which has interacted dispersively with both subsystems and experienced Faraday rotation due to the spin selective trion transitions is discussed. In order to assess the applicability of the scheme for distant entanglement generation between atomic qubits proposed by T.D. Ladd et al. [New J. Phys. 8, 184 (2006)] to two distant quantum dots, one needs to understand the limitations imposed by hyperfine interactions of the quantum dot spin with the nuclear spins of the material and by non-identical quantum dots. Feasibility is displayed by calculating the fidelity for Bell state generation analytically within an approximate framework. The fidelity is evaluated for a wide range of parameters and different pulse lengths, yielding a trade-off between signal and decoherence, as well as a set of optimal parameters. Strategies to overcome the effect of non-identical quantum dots on the fidelity are examined and the timescales imposed by the nuclear spins are discussed, showing that efficient entanglement generation is possible with distant quantum dots. In this context, effects due to light hole transitions become important and have to be included. The scheme is discussed for one- as well as for two-sided cavities, where one must be careful with reflected light which carries spin information. The validity of the approximate method is checked by a more elaborate semiclassical simulation which includes trion formation.Comment: 17 pages, 13 figures, typos corrected, reference update

    Linear optical absorption spectra of mesoscopic structures in intense THz fields: free particle properties

    Get PDF
    We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on non-equilibrium Green functions, is formulated, and applied to the calculation of linear optical absorption spectrum for several non-equilibrium mesoscopic structures. We show that a blue-shift occurs and sidebands appear in bulk-like structures, i.e., the dynamical Franz-Keldysh effect [A.-P. Jauho and K. Johnsen, Phys. Rev. Lett. 76, 4576 (1996)]. An analytic calculation leads to the prediction that in the case of superlattices distinct stable steps appear in the absorption spectrum when conditions for dynamical localization are met.Comment: 13 Pages, RevTex using epsf to include 8 ps figures. Submitted to Phys. Rev. B (3 April 97

    The effect of Auger heating on intraband carrier relaxation in semiconductor quantumrods

    Full text link
    The rate at which excited charge carriers relax to their equilibrium state affects many aspects of the performance of nanoscale devices, including switching speed, carrier mobility and luminescent efficiency. Better understanding of the processes that govern carrier relaxation therefore has important technological implications. A significant increase in carrier-carrier interactions caused by strong spatial confinement of electronic excitations in semiconductor nanostructures leads to a considerable enhancement of Auger effects, which can further result in unusual, Auger-process-controlled recombination and energy-relaxation regimes. Here, we report the first experimental observation of efficient Auger heating in CdSe quantum rods at high pump intensities, leading to a strong reduction of carrier cooling rates. In this regime, the carrier temperature is determined by the balance between energy outflow through phonon emission and energy inflow because of Auger heating. This equilibrium results in peculiar carrier cooling dynamics that closely correlate with recombination dynamics, an effect never before seen in bulk or nanoscale semiconductors.Comment: 7 pages, 4 figure

    Coupled free-carrier and exciton relaxation in optically excited semiconductors

    Get PDF
    The energy relaxation of coupled free-carrier and exciton populations in semiconductors after low-density ultrafast optical excitation is studied through a kinetic approach. The set of semiclassical Boltzmann equations, usually written for electron and hole populations only, is complemented by an additional equation for the exciton distribution. The equations are coupled by reaction terms describing phonon-mediated exciton binding and dissociation. All the other relevant scattering mechanisms, such as carrier-carrier, carrier-phonon, and exciton-phonon interactions, are also included. The resulting system of rate equations in reciprocal space is solved by an extended ensemble Monte Carlo method. As a first application, we show results for the dynamics of bulk GaAs in the range from 1 to ∼200 ps after photoexcitation. The build-up of an exciton population and its sensitivity to the excitation conditions are discussed in detail. As a consequence of the pronounced energy dependence of the LO-phonon-assisted transition probabilities between free-pair states and excitons, it is found that the efficiency of the exciton-formation process and the temporal evolution of the resulting population are sensitive to the excitation energy. We discuss the effects on luminescence experiments

    Monte Carlo simulation of ultrafast processes in photoexcited semiconductors: Coherent and incoherent dynamics

    Get PDF
    The ultrafast dynamics of photoexcited carriers in a semiconductor is investigated by using a Monte Carlo simulation. In addition to a ‘‘conventional’’ Monte Carlo simulation, the coherence of the external light field and the resulting coherence in the carrier system are fully taken into account. This allows us to treat the correct time dependence of the generation process showing a time-dependent linewidth associated with a recombination from states off resonance due to stimulated emission. The subsequent dephasing of the carriers due to scattering processes is analyzed. In addition, the simulation contains the carrier-carrier interaction in Hartree-Fock approximation giving rise to a band-gap renormalization and excitonic effects which cannot be treated in a conventional Monte Carlo simulation where polarization effects are neglected. Thus the approach presents a unified numerical method for the investigation of phenomena occurring close to the band gap and those typical for the energy relaxation of hot carriers

    Semiconductor Spintronics

    Full text link
    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure

    Optimal control of dissipation for the example of the spin-boson model

    No full text
    The interaction of a quantum system with a bath, usually referred to as dissipation, can be controlled if one can establish quantum interference between the system-bath interaction and a coupling of the system to an external control field. This is demonstrated for the example of the spin-boson model in the strong-coupling limit for the system-bath interaction. It is shown that driving and trapping of the spin system leads to an optimum control problem which is nonlinear in the external control field. Using an indirect optimization strategy introducing a Lagrange-type adjoint state, we show that the spin system can be trapped in otherwise unstable quantum states and that it can be driven from a given initial state to a specified target state with high fidelity
    corecore