14 research outputs found

    Glucose Amplifies Fatty Acid-Induced Endoplasmic Reticulum Stress in Pancreatic β-Cells via Activation of mTORC1

    Get PDF
    BACKGROUND: Palmitate is a potent inducer of endoplasmic reticulum (ER) stress in beta-cells. In type 2 diabetes, glucose amplifies fatty-acid toxicity for pancreatic beta-cells, leading to beta-cell dysfunction and death. Why glucose exacerbates beta-cell lipotoxicity is largely unknown. Glucose stimulates mTORC1, an important nutrient sensor involved in the regulation of cellular stress. Our study tested the hypothesis that glucose augments lipotoxicity by stimulating mTORC1 leading to increased beta-cell ER stress. PRINCIPAL FINDINGS: We found that glucose amplifies palmitate-induced ER stress by increasing IRE1alpha protein levels and activating the JNK pathway, leading to increased beta-cell apoptosis. Moreover, glucose increased mTORC1 activity and its inhibition by rapamycin decreased beta-cell apoptosis under conditions of glucolipotoxicity. Inhibition of mTORC1 by rapamycin did not affect proinsulin and total protein synthesis in beta-cells incubated at high glucose with palmitate. However, it decreased IRE1alpha expression and signaling and inhibited JNK pathway activation. In TSC2-deficient mouse embryonic fibroblasts, in which mTORC1 is constitutively active, mTORC1 regulated the stimulation of JNK by ER stressors, but not in response to anisomycin, which activates JNK independent of ER stress. Finally, we found that JNK inhibition decreased beta-cell apoptosis under conditions of glucolipotoxicity. CONCLUSIONS/SIGNIFICANCE: Collectively, our findings suggest that mTORC1 mediates glucose amplification of lipotoxicity, acting through activation of ER stress and JNK. Thus, mTORC1 is an important transducer of ER stress in beta-cell glucolipotoxicity. Moreover, in stressed beta-cells mTORC1 inhibition decreases IRE1alpha protein expression and JNK activity without affecting ER protein load, suggesting that mTORC1 regulates the beta-cell stress response to glucose and fatty acids by modulating the synthesis and activity of specific proteins involved in the execution of the ER stress response. This novel paradigm may have important implications for understanding beta-cell failure in type 2 diabetes

    An inducible Cldn11-CreERT2 mouse line for selective targeting of lymphatic valves

    No full text
    Luminal valves of collecting lymphatic vessels are critical for maintaining unidirectional flow of lymph and their dysfunction underlies several forms of primary lymphedema. Here, we report on the generation of a transgenic mouse expressing the tamoxifen inducible CreERT2 under the control of Cldn11 promoter that allows, for the first time, selective and temporally controlled targeting of lymphatic valve endothelial cells. We show that within the vasculature CLDN11 is specifically expressed in lymphatic valves but is not required for their development as mice with a global loss of Cldn11 display normal valves in the mesentery. Tamoxifen treated Cldn11-CreERT2 mice also carrying a fluorescent Cre-reporter displayed reporter protein expression selectively in lymphatic valves and, to a lower degree, in venous valves. Analysis of developing vasculature further showed that Cldn11-CreERT2-mediated recombination is induced during valve leaflet formation, and efficient labeling of valve endothelial cells was observed in mature valves. The Cldn11-CreERT2 mouse thus provides a valuable tool for functional studies of valves.Title in Web of Science: An inducible Cldn11-CreER(T2) mouse line for selective targeting of lymphatic valves</p

    Short-term glucocorticoid treatment increases insulin secretion in islets derived from lean mice through multiple pathways and mechanisms.

    No full text
    Chronic exposure to elevated levels of glucocorticoids leads to metabolic dysfunctions with hyperglycemia and insulin resistance. Long-term treatment with glucocorticoids induces severe impairment of glucose-stimulated insulin secretion. We analyzed the effects of short-, and medium-term (2-120h) treatment with 50-200nM glucocorticoids on primary pancreatic islet cultures derived from lean C57BL/6J mice. In contrast to animal models of insulin resistance, beta-cells from lean mice respond with an increased glucose-stimulated insulin secretion, with a peak effect around 18-24h of treatment. Analyses of the insulin secretion response reveal that early and late phase responses are dissociated upon glucocorticoid treatment. Whereas late phase responses return to basal levels after long treatment, early phase responses remain increased over several days. Increased insulin secretion is also obtained by incubation with the inactive glucocorticoid dehydrocorticosterone, pointing to an important role of the enzyme 11beta-hydroxysteroid dehydrogenase type 1 in mediating glucocorticoid effects in beta-cells. Transcript profiling revealed differential regulation of genes involved in mediation of signal transduction, insulin secretion, stress and inflammatory responses. The results show that short- to medium-term glucocorticoid treatment of pancreatic islets derived from lean mice leads to an increased insulin release and may constitute an important parameter in changing towards a pro-diabetic phenotype
    corecore