34,784 research outputs found
Solving the kernel perfect problem by (simple) forbidden subdigraphs for digraphs in some families of generalized tournaments and generalized bipartite tournaments
A digraph such that every proper induced subdigraph has a kernel is said to
be \emph{kernel perfect} (KP for short) (\emph{critical kernel imperfect} (CKI
for short) resp.) if the digraph has a kernel (does not have a kernel resp.).
The unique CKI-tournament is and the unique
KP-tournaments are the transitive tournaments, however bipartite tournaments
are KP. In this paper we characterize the CKI- and KP-digraphs for the
following families of digraphs: locally in-/out-semicomplete, asymmetric
arc-locally in-/out-semicomplete, asymmetric -quasi-transitive and
asymmetric -anti-quasi-transitive -free and we state that the problem
of determining whether a digraph of one of these families is CKI is polynomial,
giving a solution to a problem closely related to the following conjecture
posted by Bang-Jensen in 1998: the kernel problem is polynomially solvable for
locally in-semicomplete digraphs.Comment: 13 pages and 5 figure
A two-state model of twisted intramolecular chargetransfer in monomethine dyes
A two-state model Hamiltonian is proposed to model the coupling of twisting
displacements to charge-transfer behavior in the ground and excited states of a
general monomethine dye molecule. This coupling may be relevant to the
molecular mechanism of environment-dependent fluorescence yield enhancement.
The model is parameterized against quantum chemical calculations on different
protonation states of the green fluorescent protein chromophore (GFP), which
are chosen to sample different regimes of detuning from the cyanine (resonant)
limit. The model provides a simple yet realistic description of the charge
transfer character along two possible excited state twisting channels
associated with the methine bridge. It describes qualitatively different
behavior in three regions that can be classified by their relationship to the
resonant (cyanine) limit. The regimes differ by the presence or absence of
twist-dependent polarization reversal and the occurrence of conical
intersections. We find that selective biasing of one twisting channel over
another by an applied diabatic biasing potential can only be achieved in a
finite range of parameters near the cyanine limit.Comment: 45 pages, 9 Figures (incl. 2 chemical schemes). Accepted for
publication by the Journal of Chemical Physics. Changes include 2 additional
figures to and expanded discussion of key points felt to be important, and
condensed discussion of some points felt to be less importan
Multi-object spectroscopy of low redshift EIS clusters. I
We report the results of the first multi-object spectroscopic observations at
the Danish 1.54m telescope at La Silla, Chile. Observations of five cluster
candidates from the ESO Imaging Survey Cluster Candidate Catalog are described.
From these observations we confirm the reality of the five clusters with
measured redshifts of 0.11<=z<=0.35. We estimate velocity dispersions in the
range 294-621km/s indicating rather poor clusters. This, and the measured
cluster redshifts are consistent with the results of the matched filter
procedure applied to produce the Cluster Candidate Catalog.Comment: 7pages, accepted by Astronomy and Astrophysic
The construction and operation of a water tunnel in application to flow visualization studies of an oscillating airfoil
The water tunnel which was constructed at the NASA Ames Research Center is described along with the flow field adjacent to an oscillating airfoil. The design and operational procedures of the tunnel are described in detail. Hydrogen bubble and thymol blue techniques are used to visualize the flow field. Results of the flow visualizations are presented in a series of still pictures and a high speed movie. These results show that time stall is more complicated than simple shedding from the leading edge or the trailing edge, particularly at relatively low frequency oscillations comparable to those of a helicopter blade. Therefore, any successful theory for predicting the stall loads on the helicopter blades must treat an irregular separated region rather than a discrete vortex passing over each blade surface
Long-Period Building Response to Earthquakes in the San Francisco Bay Area
This article reports a study of modeled, long-period building responses to ground-motion simulations of earthquakes in the San Francisco Bay Area. The earthquakes include the 1989 magnitude 6.9 Loma Prieta earthquake, a magnitude 7.8 simulation of the 1906 San Francisco earthquake, and two hypothetical magnitude 7.8 northern San Andreas fault earthquakes with hypocenters north and south of San Francisco. We use the simulated ground motions to excite nonlinear models of 20-story, steel, welded moment-resisting frame (MRF) buildings. We consider MRF buildings designed with two different strengths and modeled with either ductile or brittle welds. Using peak interstory drift ratio (IDR) as a performance measure, the stiffer, higher strength building models outperform the equivalent more flexible, lower strength designs. The hypothetical magnitude 7.8 earthquake with hypocenter north of San Francisco produces the most severe ground motions. In this simulation, the responses of the more flexible, lower strength building model with brittle welds exceed an IDR of 2.5% (that is, threaten life safety) on 54% of the urban area, compared to 4.6% of the urban area for the stiffer, higher strength building with ductile welds. We also use the simulated ground motions to predict the maximum isolator displacement of base-isolated buildings with linear, single-degree-of-freedom (SDOF) models. For two existing 3-sec isolator systems near San Francisco, the design maximum displacement is 0.5 m, and our simulations predict isolator displacements for this type of system in excess of 0.5 m in many urban areas. This article demonstrates that a large, 1906-like earthquake could cause significant damage to long-period buildings in the San Francisco Bay Area
vbyCaHbeta CCD Photometry of Clusters. VI. The Metal-Deficient Open Cluster NGC 2420
CCD photometry on the intermediate-band vbyCaHbeta system is presented for
the metal-deficient open cluster, NGC 2420. Restricting the data to probable
single members of the cluster using the CMD and the photometric indices alone
generates a sample of 106 stars at the cluster turnoff. The average E(b-y) =
0.03 +/- 0.003 (s.e.m.) or E(B-V) = 0.050 +/- 0.004 (s.e.m.), where the errors
refer to internal errors alone. With this reddening, [Fe/H] is derived from
both m1 and hk, using b-y and Hbeta as the temperature index. The agreement
among the four approaches is reasonable, leading to a final weighted average of
[Fe/H] = -0.37 +/- 0.05 (s.e.m.) for the cluster, on a scale where the Hyades
has [Fe/H] = +0.12. When combined with the abundances from DDO photometry and
from recalibrated low-resolution spectroscopy, the mean metallicity becomes
[Fe/H] = -0.32 +/- 0.03. It is also demonstrated that the average cluster
abundances based upon either DDO data or low-resolution spectroscopy are
consistently reliable to 0.05 dex or better, contrary to published attempts to
establish an open cluster metallicity scale using simplistic offset corrections
among different surveys.Comment: scheduled for Jan. 2006 AJ; 33 pages, latex, includes 7 figures and 2
table
Discrimination and Strategic Group Division in Tournaments
The contracts we consider in this paper must solve three problems: moral hazard, insurance and discrimination. The moral hazard problem is that of providing the agents with incentives to perform in a way that maximizes the profit to the principal, when the agent's actions are unobservable. The insurance problem is that of minimizing the cost of risk through risk minimization and risk sharing. The issue of discrimination is that of paying agents with different skills sufficiently to participate, without overcompensating other agents. We show how the principal may benefit from a strategic division of the agents into different tournaments or groups. The optimal number of groups from the principal's point of view is determined through a trade-off between moral hazard, insurance and discrimination issues.Agribusiness,
Coulomb corrections to bremsstrahlung in electric field of heavy atom at high energies
The differential and partially integrated cross sections are considered for
bremsstrahlung from high-energy electrons in atomic field with the exact
account of this field. The consideration exploits the quasiclassical electron
Green's function and wave functions in an external electric field. It is shown
that the Coulomb corrections to the differential cross section are very
susceptible to screening. Nevertheless, the Coulomb corrections to the cross
section summed up over the final-electron states are independent of screening
in the leading approximation over a small parameter ( is
a screening radius, is the electron mass, ). Bremsstrahlung from
an electron beam of the finite size on heavy nucleus is considered as well.
Again, the Coulomb corrections to the differential probability are very
susceptible to the beam shape, while those to the probability integrated over
momentum transfer are independent of it, apart from the trivial factor, which
is the electron-beam density at zero impact parameter. For the Coulomb
corrections to the bremsstrahlung spectrum, the next-to-leading terms with
respect to the parameters ( is the electron energy) and
are obtained.Comment: 13 pages, 4 figure
Development of a unique laboratory standard indium gallium arsenide detector for the 500 to 1700 micron spectral region, phase 2
In the course of this work, 5 mm diameter InGaAs pin detectors were produced which met or exceeded all of the goals of the program. The best results achieved were: shunt resistance of over 300 K ohms; rise time of less than 300 ns; contact resistance of less than 20 ohms; quantum efficiency of over 50 percent in the 0.5 to 1.7 micron range; and devices were maintained and operated at 125 C without deterioration for over 100 hours. In order to achieve the goals of this program, several major technological advances were realized, among them: successful design, construction and operation of a hydride VPE reactor capable of growing epitaxial layers on 2 inch diameter InP substrates with a capacity of over 8 wafers per day; wafer processing was upgraded to handle 2 inch wafers; a double layer Si3N4/SiO2 antireflection coating which enhances response over the 0.5 to 1.7 micron range was developed; a method for anisotropic, precisely controlled CH4/H2 plasma etching for enhancement of response at short wavelengths was developed; and electronic and optical testing methods were developed to allow full characterization of detectors with size and spectral response characteristics. On the basis of the work and results achieved in this program, it is concluded that large size, high shunt resistance, high quantum efficiency InGaAs pin detectors are not only feasible but also manufacturable on industrial scale. This device spans a significant portion of visible and near infrared spectral range and it will allow a single detector to be used for the 0.5 to 1.7 micron spectral region, rather than the presently used silicon (for 0.5 to 1.1 microns) and germanium (0.8 to 1.7 microns)
- …