125 research outputs found

    Micro/nanostructural properties of peri-implant jaw bones: a human cadaver study

    Get PDF
    PURPOSE: Many points concerning the structure of osseointegration and the surrounding jaw bone remain unclear, and its optimal histological form has yet to be identified. The aim of this study was to clarify the structural characteristics of peri-implant jaw bone on the micro- and nano-scales by quantitatively evaluating bone quality. METHODS: Five samples of human mandibular bone containing dental implants and one dentate sample that had been in place for some years while the donors were still alive were collected. Bulk staining was performed, and 100-μm-thick polished specimens were prepared. The osteon distributions in peri-implant bone and mandibular cortical bone were measured, after which alignment analysis of biological apatite (BAp) crystallites and anisotropy analysis of collagen fiber orientation using second-harmonic generation imaging were carried out. RESULTS: Osteons in the vicinity of the implant body ran parallel to it. In the cortical bone at the base of the mandible, however, most osteons were oriented mesiodistally. The preferential alignment of BAp crystallites was generally consistent with osteon orientation. The orientation of collagen fibers in peri-implant jaw bone resembled the concentric rings seen in normal cortical bone, but there were also fibers that ran orthogonally across these concentric fibers. CONCLUSIONS: These results suggest that the mechanical strain imposed by implants causes the growth of cortical bone-like bone in areas that would normally consist of cancellous bone around the implants, and that its structural characteristics are optimized for the load environment of the peri-implant jaw bone

    Influence of the initial chemical conditions on the rational design of silica particles

    Get PDF
    The influence of the water content in the initial composition on the size of silica particles produced using the Stöber process is well known. We have shown that there are three morphological regimes defined by compositional boundaries. At low water levels (below stoichiometric ratio of water:tetraethoxysilane), very high surface area and aggregated structures are formed; at high water content (>40 wt%) similar structures are also seen. Between these two boundary conditions, discrete particles are formed whose size are dictated by the water content. Within the compositional regime that enables the classical Stöber silica, the structural evolution shows a more rapid attainment of final particle size than the rate of formation of silica supporting the monomer addition hypothesis. The clearer understanding of the role of the initial composition on the output of this synthesis method will be of considerable use for the establishment of reliable reproducible silica production for future industrial adoption

    Kvalitativna procjena eliminacije TCP-a i TAMORF-a iz organizma štakora metodom GC-MS

    Get PDF
    Nerve agents are highly toxic organophosphorus (OP) compounds. They inhibit acetylcholinesterase (AChE), an enzyme that hydrolyses acetycholine (ACh) in the nervous system. Pathophysiological changes caused by OP poisonings are primarily the consequence of surplus ACh on cholinergic receptors and in the central nervous system. Standard treatment of OP poisoning includes combined administration of carbamates, atropine, oximes and anticonvulsants. In order to improve therapy, new compounds have been synthesised and tested. Tenocyclidine (TCP) and its adamantane derivative 1-[2-(2-thienyl)-2-adamantyl] morpholine (TAMORF) have shown interesting properties against soman poisoning. In this study, we developed a qualitative GC-MS method to measure elimination of TCP and TAMORF through rat urine in order to learn more about the mechanisms through which TCP protects an organism from OP poisoning and to determine the duration of this protective effect. GC-MS showed that six hours after treatment with TCP, rat urine contained only its metabolite 1-thienylcyclohexene, while urine of rats treated with TAMORF contained both TAMORF and its metabolites.Živčani bojni otrovi po strukturi su organofosforni (OP) spojevi, čija je zajednička značajka ireverzibilna inhibicija acetilkolinesteraze (AChE), enzima koji hidrolizira acetilkolin (ACh) u živčanom sustavu. Patofi ziološka zbivanja koja nastaju pri otrovanju OP-spojevima primarno su posljedica akumuliranog ACh na kolinergičkim receptorima i u središnjem živčanom sustavu. Još uvijek nesavršen, standardni tretman liječenja otrovanja OP-spojevima uključuje kombiniranu primjenu estera karbamata, atropina, oksima i antikonvulziva. Kako bi se unaprijedila uobičajena terapija, osobito kod otrovanja somanom, ispituju se antidotski učinci mnogih spojeva. Tenociklidin (TCP) i njegov adamantanski derivat TAMORF pokazali su zanimljiva svojstva pomoćne terapije pri otrovanju somanom. Kako bi se proširile dosadašnje spoznaje o načinu na koji tenociklidini štite organizam od trovanja OP-spojevima te također o trajanju njihova antidotskog učinka, u ovom radu razvijena je GC-MS-metoda za praćenje eliminacije TCP-a i TAMORF-a iz organizma. Rezultati GC-MS-analize pokazali su da šest sati nakon tretiranja štakora TCP-om mokraće sadržavaju metabolit TCP-a 1-tienilcikloheksen, dok šest sati nakon tretiranja štakora TAMORF-om mokraće sadržavaju i TAMORF i njegove metabolite. Drugim riječima, šest sati nakon tretmana TCP se potpuno metabolizira, dok se TAMORF metabolizira djelomično, a djelomično ostaje nepromijenjen

    Catalytic gas-phase glycerol processing over SiO2-, Cu-, Ni-and Fe-supported Au nanoparticles

    Get PDF
    In this study, we investigated different metal pairings of Au nanoparticles (NPs) as potential catalysts for glycerol dehydration for the first time. All of the systems preferred the formation of hydroxyacetone (HYNE). Although the bimetallics that were tested, i.e., Au NPs supported on Ni, Fe and Cu appeared to be more active than the Au/SiO2 system, only Cu supported Au NPs gave high conversion (ca. 63%) and selectivity (ca. 70%) to HYNE

    Quantum interference of electrons in Nb_{5-\delta}Te_4 single crystals

    Full text link
    The compound Nb5δTe4Nb_{5-\delta}Te_4 (δ=0.23\delta=0.23) with quasi-one-dimensional crystal structure undergoes a transition to superconductivity at TcT_c=0.6--0.9 K. Its electronic transport properties in the normal state are studied in the temperature range 1.3--270 K and in magnetic fields up to 11 T. The temperature variation of the resistivity is weak (<2<2%) in the investigated temperature range. Nonmonotonic behavior of the resistivity is observed which is characterized by two local maxima at TT\sim2 K and \sim30 K. The temperature dependence of the resistivity is interpreted as an interplay of weak localization, weak antilocalization, and electron-electron interaction effects in the diffusion and the Cooper channel. The temperature dependence of the dephasing time τϕ\tau_\phi extracted from the magnetoresistance data is determined by the electron-phonon interaction. The saturation of τϕ\tau_\phi in the low-temperature limit correlates with TcT_c of the individual crystal and is ascribed to the scattering on magnetic impurities.Comment: 8 pages, 6 figure

    Scaling behaviour for the water transport in nanoconfined geometries

    Get PDF
    The transport of water in nanoconfined geometries is different from bulk phase and has tremendous implications in nanotechnology and biotechnology. Here molecular dynamics is used to compute the self-diffusion coefficient D of water within nanopores, around nanoparticles, carbon nanotubes and proteins. For almost 60 different cases, D is found to scale linearly with the sole parameter theta as D(theta)=DB[1+(DC/DB-1)theta], with DB and DC the bulk and totally confined diffusion of water, respectively. The parameter theta is primarily influenced by geometry and represents the ratio between the confined and total water volumes. The D(theta) relationship is interpreted within the thermodynamics of supercooled water. As an example, such relationship is shown to accurately predict the relaxometric response of contrast agents for magnetic resonance imaging. The D(theta) relationship can help in interpreting the transport of water molecules under nanoconfined conditions and tailoring nanostructures with precise modulation of water mobility
    corecore