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The nature of the Verwey transition occurring at TV ≈ 125 K in magnetite (Fe3O4) has 

been an outstanding problem over many decades. A complex low temperature electronic 

order was recently discovered and associated structural fluctuations persisting above TV 

are widely reported, but the origin of the underlying correlations and hence of the Verwey 

transition remains unclear.  Here we show that local structural fluctuations in magnetite 

emerge below the Curie transition at TC ≈ 850 K, through X-ray pair distribution function 

analysis. Around 80% of the low temperature correlations emerge in proportion to 

magnetization below TC. This confirms that fluctuations in Fe-Fe bonding arising from 

magnetic order are the primary electronic instability and hence the origin of the Verwey 

transition. Such hidden instabilities may be important to other spin-polarised conductors 

and orbitally degenerate materials.   

 

Introduction 

Short range structural correlations above the Verwey transition1,2,3,4 were reported in early 

diffuse scattering studies of magnetite,5 and their persistence up to at least room temperature 

has been studied recently6 and corroborated by observations of anomalous phonon broadening,7 

a charge gap from optical  and photoelectron spectroscopies,8,9 and magnetic excitations driven 

by polaronic distortions in resonant inelastic X-ray scattering data.10 Analysis of the 

interatomic pair distribution function (PDF)11 derived from total X-ray scattering data is a 

simple method for exploring local structure that is highly sensitive to the displacements of 

metal atoms associated with the formation of orbital molecules, metal-metal bonded clusters 

such as the trimerons observed in magnetite.12 Persistence of orbital molecules far above their 
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long-range electronic ordering transitions has been discovered from X-ray PDF studies of 

Li2RhO4,
13 Li2RuO3,

14 AlV2O4,
15 and GaV2O4.

16  

The thermal variation of local structure in magnetite has been explored here over a wide 

temperature range encompassing both the Verwey and Curie transitions through synchrotron 

X-ray PDF analysis. 

 

Results 

Variable temperature PDF analysis of magnetite 

Experimental details are in the Methods section. Total X-ray scattering data from a highly 

stoichiometric sample of magnetite were recorded from 90 to 923 K. Representative scattering 

intensity S(Q) plots and the derived PDFs G(r) are shown in Fig. 1. The monoclinic 

superstructure adopted by magnetite below TV is very complex with 168 small (< 0.24 Å) 

displacements of atoms from their positions in the high temperature cubic spinel structure.3  To 

fit the PDFs over all temperatures we have used this monoclinic supercell with lattice 

parameters adjusted to a cubic metric, and with each of the 168 atomic coordinates given by p 

= pu + fV(pd – pu) where pu is the coordinate from an undistorted high temperature cubic crystal 

structure refinement and pd is the coordinate in the distorted 90 K structure reported 

previously.3 fV is a Verwey shift parameter that describes the set of constrained structural 

displacements, such that fV = 0 corresponds to the cubic spinel structure without any local 

distortions and fV = 1 describes the full magnitude of distortions in the 90 K magnetite 

superstructure.3 Comparative views of the fV = 0 and fV = 1 structures are shown in ref. 4. Three 

values of fV were determined at each temperature by fitting the structural model to three 

successive regions of the PDF corresponding approximately to distances from atoms to their 

neighbours in the same unit cell (First Unit Cell range, covering all interatomic distances for r 

< 9.36 Å), and similarly to atoms in the Second and Third Unit Cell regions. The structural 

models and fitting procedure are further described in Methods, and fits to data and their 

sensitivity to changing fV are shown in Fig. 2. 

Thermal variations of refined structural quantities from the PDF fits are shown in Fig. 3. The 

cubic cell parameter and isotropic atomic temperature factors Uiso’s in Fig. 3a, show a slight 

anomaly at the Verwey transition (previously found to be TV = 123.4 K for this highly pure 

magnetite sample),17 but increase monotonically from 150 up to 923 K. The Verwey shift fV 
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measures an averaged local structural distortion due to electronic fluctuations. The thermal 

variation of fV when fitted to the Third Unit Cell separations (between atoms 16.8 to 24.6 Å 

apart) in Fig. 3b is a typical order-parameter behaviour at a first order phase transition, with a 

sharp fall to fV = 0 on warming through TV. Second Unit Cell correlations have a qualitatively 

similar variation although critical fluctuations decay more gradually above TV and are 

estimated to persist up to 250-300 K. However, structural correlations between atoms in the 

First Unit Cell range (< 9.4 Å apart) show a strikingly different behaviour. fV falls a little on 

warming though the Verwey transition, but around 80% of the structural fluctuations remain 

in the cubic phase of magnetite up to 500 K. At higher temperatures fV decreases rapidly to 

zero close to the Curie transition at TC ≈ 850 K and so behaves like an order parameter for the 

magnetic ordering transition with a very similar temperature dependence to the bulk 

magnetization reported for a similar synthetic microcrystalline magnetite.18 This is the key 

discovery of the present study as it demonstrates that the structural fluctuations responsible for 

the Verwey transition emerge directly with the long range magnetic order below the Curie 

transition, and scale with the magnetization.  

The thermal variations of the unit cell parameter and isotropic atomic temperature factors of 

magnetite plotted in Fig. 3a do not show any discontinuity at TC ≈ 850 K, in keeping with 

previous high temperature structural studies.19,20 This demonstrates that our PDF fitting method 

is robust in decorrelating the overall lattice expansion and phonon motion, quantified by the 

latter parameters, from the local structural distortions due to electronic fluctuations described 

by fV. The magnitudes of the displacements of atoms from their ideal positions due to phonon 

motion and due to First Unit Cell electronic distortions are compared in Fig. 3c. The electronic 

distortion displacements are smaller than those due to thermal motion in the disordered high 

temperature region, but they increase to a comparable magnitude below TV. Although the 

timescale for these structural fluctuations is not directly measured, their lack of correlation with 

phonon motions suggests that they are essentially static or slowly diffusing. A recent quasi-

elastic neutron scattering study of GaV2O4 spinel above the 415-K charge ordering transition 

found that structurally-disordered orbital molecules remain well-defined and without 

measurable dynamics up to 1100 K.16 

Trimeron fluctuations in cubic magnetite 

The complex monoclinic superstructure of magnetite below TV was previously found to exhibit 

trimerons (Fig. 4a), small polarons surrounding three-Fe units that share corners with each 
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other to build up a long-range ordered network as shown in Fig. 4b. The end-to-end Fe-Fe 

distance in a trimeron is 6 Å so their local lattice distortion lies within the First Unit Cell range 

(< 9.4 Å) and hence arises below the Curie transition as demonstrated in Fig. 3b. Persistence 

of a disordered glassy network of trimerons in the cubic phase of magnetite up to TC provides 

a mechanism for the coupling of the high temperature structural fluctuations to the magnetism 

and hence for the origin of the Verwey transition as follows.  

Trimerons result from coupled Fe2+/Fe3+ charge ordering, Fe2+ orbital ordering, and weak Fe-

Fe bonding effects driven by ferromagnetism within three-Fe atom units as described in the 

caption to Fig. 4a.3 Comparison with other mixed valent Fe2+/Fe3+ oxides shows that neither 

the charge nor orbital orders require long range spin order, as evidenced by Fe2OBO3 
21,22 and 

LuFe2O4 
23 which both have charge and orbital ordering transitions at higher temperatures than 

their magnetic transitions. However, the weak bonding interactions that shorten Fe-Fe distances 

in the trimerons do require ferromagnetic alignment of the three core S = 5/2 spins, as 

demonstrated recently in CaFe3O5 where phase-separated trimeron and non-trimeron ground 

states are observed.24 Hence the rapid emergence of structural fluctuations in proportion to 

magnetisation on cooling below the long range magnetic ordering temperature confirms that 

the direct Fe-Fe bonding interactions are the primary driver of the local distortions in magnetite. 

As suggested previously, the Fe-Fe interactions induce associated charge and orbital 

fluctuations that become ordered as trimeron units below the Verwey transition.3 The regular 

cubic spinel arrangement in which all nearest-neighbour Fe-Fe distances are equivalent is thus 

unstable with respect to local variations in Fe-Fe separations in the magnetically ordered state 

of magnetite. There are many degenerate arrangements for linking trimerons with similar 

connectivities to the observed low temperature network shown in Fig. 4b,3 so the long range 

electronic order is frustrated. The ratio of energy scales for formation (TC) and long range order 

(TV) of the electronic distortions serves as a measure of the degree of electronic frustration, 

analogous to the Weiss to Néel temperature ratio used for frustrated antiferromagnets. The 

value of TC/TV ≈ 7 confirms that electronic order in magnetite is strongly frustrated. 

 

Discussion 

Analysis of the pair distribution function derived from X-ray scattering data reveals that local 

structural distortions due to electronic fluctuations emerge at the Curie transition of magnetite.  

This confirms that fluctuations in Fe-Fe bonding are the dominant electronic instability that 
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couples charge and orbital fluctuations to the magnetic order, and hence are the origin of the 

Verwey transition. Although many experimental studies of magnetite have been carried out at 

temperatures around TV, changes near TC are much less investigated and will be important to 

explore the incipient electronic fluctuations further. Such ‘hidden’ local instabilities may also 

be important to the physics of other spin-polarised conductors and orbitally degenerate 

materials, and the assumed uniformity of their high temperature structures may require critical 

reassessment.   

 

References

1 Verwey, E. J. W. Electronic conduction of magnetite (Fe3O4) and its transition point at low 

temperatures. Nature 144, 327-328 (1939). 

2 Walz, F. The Verwey transition - a topical review. J. Phys.: Condens. Matter 14, R285-R340 

(2002). 

3 Senn, M. S., Wright, J. P. & Attfield, J. P., Charge order and three-site distortions in the 

Verwey structure of magnetite. Nature 481, 173-176 (2012) 

4 Senn, M. S., Wright, J. P. & Attfield, J. P., The Verwey Phase of Magnetite - a Long-running 

Mystery in Magnetism. J. Korean Phys. Soc. 62, 1372-1375 (2013). 

5 Shapiro, S. M., Iizumi, M. & Shirane, G., Neutron scattering study of the diffuse critical 

scattering associated with the Verwey transition in magnetite (Fe3O4). Phys. Rev. B 14, 200-

207 (1976) 

6 Bosak, A., et al. Short-range correlations in magnetite above the Verwey temperature. Phys. 

Rev. X 4, 011040 (2014). 

7 Hoesch, M., et al., Anharmonicity due to electron-phonon coupling in magnetite. Phys. Rev. 

Lett. 110, 207204 (2013). 

8 Park, S. K., Ishikawa, T., & Tokura, Y., Charge-gap formation upon the Verwey transition in 

Fe3O4. Phys. Rev. B 58, 3717 (1998). 

9 Taguchi, M., et al., Temperature dependence of magnetically active charge excitations in 

magnetite across the Verwey transition. Phys. Rev. Lett. 115, 256405 (2015). 

10 Huang, H. Y., et al., Jahn-Teller distortion driven magnetic polarons in magnetite. Nature 

Comm. 8, 15929 (2017). 

11 T. Egami & S. J. L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex 

Materials: Volume 16 (Pergamon Materials Series) (2012).  

                                                           



6 
 

                                                                                                                                                                                     
12 Attfield, J. P., Orbital molecules in electronic materials. APL Mater. 3, 041510 (2015). 

13 Knox, K. R., et al., Local structural evidence for strong electronic correlations in spinel 

LiRh2O4. Phys. Rev. B 88, 174114 (2013). 

14 Kimber, S. A., et al., Valence bond liquid phase in the honeycomb lattice material Li2RuO3. 

Phys. Rev. B 89, 081408 (2014). 

15 Browne, A. J., Kimber, S. A. J., & Attfield, J. P., Persistent three-and four-atom orbital 

molecules in the spinel AlV2O4. Phys. Rev. Mater. 1, 052003 (2017). 

16 Browne, A. J., Lithgow, C., Kimber, S. A. J., & Attfield, J. P., Orbital Molecules in the new 

spinel GaV2O4 Inorg. Chem. 57, 2815-2822 (2018). 

17 Senn, M. S., Wright, J. P., Cumby, J. & Attfield, J. P. Charge localization in the Verwey 

structure of magnetite. Phys. Rev. B 92, 024104 (2015). 

18 Ponomar, V. P., Dudchenko, N. O. & Brik, A. B.  Thermal stability of micro- and nanoscale 

magnetite by thermomagnetic analysis data. 2017 IEEE 7th International Conference 

Nanomaterials: Application & Properties (NAP), Odessa, 02MFPM03 (2017). 

19 Okudera, H., Kihara, K., & Matsumoto, T., Temperature dependence of structure parameters 

in natural magnetite: single crystal X-ray studies from 126 to 773 K. Acta Cryst. B 52, 450-457 

(1996). 

20 Levy, D., Giustetto, R., & Hoser, A. Structure of magnetite (Fe3O4) above the Curie 

temperature: a cation ordering study. Phys. Chem. Miner. 39, 169-176 (2012). 

21 Attfield, J. P. et al.  Electrostatically driven charge-ordering in Fe2OBO3. Nature 396, 655-

658 (1998). 

22 Angst, M. et al. Charge order superstructure with integer iron valence in Fe2OBO3. Phys. 

Rev. Lett. 99, 086403 (2007). 

23 de Groot, J. et al. Charge order in LuFe2O4: an unlikely route to ferroelectricity. Phys. Rev. 

Lett. 108, 187601 (2012). 

24 Hong, K. H., Arevalo-Lopez, A. M., Cumby, J., Ritter, C. & Attfield, J. P. Long range 

electronic phase separation in CaFe3O5. Nature Comm. 9, 2975 (2018).   

 

Acknowledgments  

We acknowledge financial support from European Research Council (ERC) and Science and 

Technology Facilities Council (STFC) for provision of beam time at ESRF. We thank Prof. 

J.M. Honig (Purdue University) for provision of the high-quality magnetite sample 



7 
 

Author contributions 

G.P., E.P., J.C., S.A.J.K. and J.P.A. designed the concept for this study. G.P., E.P., J.C., J.M.H., 

J.P.W., and S.A.J.K., performed the experimental work and data analysis. G.P. and J.P.A. wrote 

the manuscript with inputs from all authors.  

Supplementary information is available in the online version of the paper. Reprints and 

permissions information is available online at www.nature.com/reprints. 

Correspondence and requests for materials should be addressed to J.P.A.; 

j.p.attfield@ed.ac.uk 

Competing Interests 

The authors declare no competing financial or non-financial interests. 

Conflict of interest 

No conflict of interest to declare.  

 

 

 

 

 

 

 

 



8 
 

   

Fig. 1. X-ray scattering data for magnetite. (a) Scattering intensities S(Q) for magnetite at 

three representative temperatures. (b) Pair distribution functions G(r) derived from S(Q) data 

in (a). Typical thermal effects leading to loss of high-Q features in S(Q) and broadening of G(r) 

peaks are observed. 
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Fig. 2 Fitting of magnetite PDFs. (a) and (b) Comparison of fits of (a) the cubic (residual Rw 

= 15.6%) and (b) the monoclinic superstructure (Rw = 11.6%) models to the 90 K PDF. The 

visible improvement of the fit to the r ≈ 3 Å peak measuring nearest neighbour Fe-Fe (and O-
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O) distances and lowering of Rw demonstrates sensitivity to the monoclinic Verwey 

superstructure distortions. PDF data are open blue circles, fits are red curves and the difference 

is below in green. (c) Rw as a function of the Verwey shift parameter fV from fits to the First 

Unit Cell region of the high temperature PDFs. The well-defined minimum seen at fV ≈ 0.8 for 

the 498 K fits becomes more shallow and moves to zero at the highest temperatures, as plotted 

in Fig. 3(b). This subtle change of local structure can be seen in the shift in the maximum of 

the 3 Å peak to slightly longer r (inset), consistent with the loss of Fe-Fe distances shortened 

through trimeron bonding.   
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Fig. 3. Thermal variations of parameters from magnetite PDF fits. (a) Isotropic 

temperature factors Uiso’s for tetrahedral FeA, octahedral FeB, and oxygen sites, and the cubic 

cell parameter from fits to the First Unit Cell PDF range. (b) Verwey shifts fV fitted to First, 

Second and Third Unit Cell PDF ranges. fV represents the magnitude of structural distortions 

due to electronic fluctuations in the cubic phase of magnetite above TV. The First Unit Cell 

values show that substantial local structural distortions persist up to TC, and closely match the 
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variation of bulk magnetisation data taken from ref. 18. This demonstrates that the structural 

and electronic fluctuations responsible for the Verwey transition are a direct result of the long 

range magnetic order. (c) Comparison of the atomic displacements due to electronic 

fluctuations dV, calculated from atomic coordinates for the First Unit Cell fV values, and those 

due to thermal motion taken as dT = √Uiso from values shown in (a). Error bars are estimated 

standard deviations from the refinements. 

 

 

 

 

Fig. 4. Trimeron bonding driven by magnetic order in magnetite. Charge ordered Fe2+/Fe3+ 

states are shown as blue/yellow spheres, trimerons are green, and oxide ions are red. (a) A 

single trimeron unit consisting of three Fe sites with parallel S = 5/2 spins as shown by the 

brown-green arrows. Orbital order at the central Fe2+ site localises an antiparallel spin electron 

in one of the t2g orbitals which distorts the local structure through elongation of four Fe-O 

bonds and shortening of the distances through weak bonding to two Fe neighbours in the same 

plane, as indicated by the purple arrows. The minority spin electron density is approximated 

by the ellipsoid shown. (b) Long range order of trimerons in the monoclinic superstructure 

formed below the Verwey transition. Corner-sharing of trimerons results in a complex pattern 

of atomic displacements that has been used to model the local structure in the PDFs. 

 

 

Methods 
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Powder X-ray scattering experiments  

The same highly pure magnetite powder (Fe3-δO4 with  < 0.0001) as used in previous 

studies3,25,26,27  was packed in a 0.5 mm diameter quartz capillary and sealed under Ar 

atmosphere in a glove bag. Preliminary measurements were performed on beam line ID15B at 

ESRF, Grenoble, and full data were collected on ESRF instrument ID11 with wavelength λ = 

0.15720(1) Å using a FReLoN camera for diffraction pattern acquisition. A nitrogen 

cryostream was used to collect patterns between 90 and 400 K in 10 K steps. Small anomalies 

seen in several refined quantities around 250-300 K in Fig. 3 most likely reflect ice in the 

sample vicinity leading to additional scattering contributions, as magnetite does not have an 

intrinsic lattice anomaly in this temperature region. A hot air blower was used to collect data 

between 498 and 923 K in 50 K steps. Empty capillary data were collected at 90, 200, 473, 

573, 673, 773 and 873 K. For each dataset the temperature was stabilised for 10 minutes and 

then data were collected for 10 minutes using the accumulation mode of the detector for 10 

seconds exposure frames. Data were also collected from CeO2 and Si standards at 300 K to 

calibrate the instruments and determine instrumental parameters.  

Instrument calibration and image integration was performed with pyFAI software.28 The 

instrument model was recalibrated for every temperature in the cryostat datasets in order to 

allow for slight detector shifts. A fixed instrument model was used for the hot air blower data. 

Datasets were converted to scattering intensities S(Q) as a function of scattering vector Q and 

these were transformed to pair distribution functions G(r), where r is interatomic distance, 

using the pdfgetx3 suite.29 Parameters values Qmin = 1 Å-1, Qmax = 31 Å-1 and rpoly = 0.9 Å were 

applied to all datasets to enable structural changes in G(r) to be analysed consistently across 

the full temperature range. Representative S(Q) and G(r) plots are shown in Fig. 1 and 

Supplementary Fig. 1. 

Structural models for PDF analysis 

Structural models used to fit magnetite PDFs at all temperatures were based on the supercell 

of the low temperature structure with monoclinic space group Cc symmetry which contains 56 

unique atoms with 168 variable coordinates. A cubic model previously refined against 130 K 

powder X-ray and neutron data25,26 was used as the reference undistorted structure. The 

VESTA software30 was used to generate a supercell of the cubic structure with metric a = b = 

√2ac, c = 2ac,  =  =  = 90°, where ac is the cubic spinel cell parameter, and atomic 

coordinates pu in Cc space group symmetry are shown in Supplementary Table 1. This model 
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has fV = 0. The previously reported 90 K monoclinic Cc structure3 was transformed to the same 

cell metric (from a = 11.88881(3) Å, b = 11.84940(3) Å, c = 16.77515(1) Å, β = 90.2363(2) ° 

to a = b = 11.86182(3) Å, c = 16.77515(1) Å, β = 90°). Atomic positions were shifted slightly 

in order to preserve the magnitude of the distortions as generated by the ISODISTORT 

program.31 This approximation was found to have little effect on fits of the Cc model to the 90 

K PDF (Rw = 11.5% for monoclinic cell parameters vs. Rw = 11.6% with metric constraints). 

Coordinates pd for this fully distorted reference structure (fV = 1) are shown in Supplementary 

Table 2. To vary the magnitude of the structural distortion, seven structural models were 

constructed by taking linear combinations of the undistorted and distorted coordinates p = pu + 

fV(pd – pu) for values of the Verwey shift  fV from 0 to 1.2 in increments of 0.2.  

 

 

PDF fits 

Refinements of structural models including simulation of termination ripples were performed 

with the PDFgui software 32. A fit to the CeO2 PDF with a fixed structural model was used to 

extract the instrument sensitive parameters Qdamp = 0.0475(4) Å-1 and Qbroad = 0.0186(3) Å-1. It 

was not possible to minimise the value of fV directly in the refinements and so the best-fit value 

was found by comparing Rw’s for the seven structural models with varying fixed fV values. 

A ‘box-car’ refinement procedure was followed where, at each temperature, each of the seven 

structural models were fitted to three regions of the PDF; r = 1.50 to 9.36, 9.30 to 16.85, and 

16.80 to 24.60 Å, to fit correlations between atoms separated by approximate First, Second and 

Third Unit Cell distances respectively. The cubic cell parameter ac, separate isotropic thermal 

parameters Uiso for tetrahedrally-coordinated FeA, octahedral FeB, and O sites, and the peak 

width correlation parameter δ1 were refined during fits to data in the First Unit Cell range.  

Second and Third Unit Cell fits used ac values from the First Unit Cell fits, and δ1 was set to 0. 

A further constraint of equal FeA and FeB Uiso‘s was needed to fit Third Unit Cell datasets for 

temperatures above 150 K. Fits to 90 K First Unit Cell data are shown in Fig. 3a. 

The best-fit value of fV for each temperature and data range was found from the position of the 

minimum in the Rw vs. fV curve fitted by the arbitrary function; 

Rw = (AfV
2 + BfV + C).exp(DfV)     (1) 
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where A, B, C and D are refined parameters. Fits to Rw vs. fV points are shown in Fig. 2c and 

Supplementary Fig. 2. Estimated standard deviations (esd’s) in the best-fit fv values were 

calculated from those in A, B, C and D in Equation (1). The esds on fV values smaller than 0.3 

are large so these fV values were set to zero. The best-fit First Unit Cell cell parameters and 

Uiso‘s, and their errors, were calculated by linear interpolation between values at the two fV 

increments closest to the minimum value. Lattice parameters were also fitted to the diffraction 

data using the Rietveld method and are shown in Supplementary Fig. 3. An approximate 

correlation length for the structural distortions was calculated from the First Unit Cell fV values 

and is shown in Supplementary Fig. 4. 

Data Availability 

Data that support the findings of this study have been deposited at 

https://datashare.is.ed.ac.uk/handle/10283/838. 
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