18,243 research outputs found

    Resonant Coherent Phonon Spectroscopy of Single-Walled Carbon Nanotubes

    Get PDF
    Using femtosecond pump-probe spectroscopy with pulse shaping techniques, one can generate and detect coherent phonons in chirality-specific semiconducting single-walled carbon nanotubes. The signals are resonantly enhanced when the pump photon energy coincides with an interband exciton resonance, and analysis of such data provides a wealth of information on the chirality-dependence of light absorption, phonon generation, and phonon-induced band structure modulations. To explain our experimental results, we have developed a microscopic theory for the generation and detection of coherent phonons in single-walled carbon nanotubes using a tight-binding model for the electronic states and a valence force field model for the phonons. We find that the coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on photoexcited carrier density. We compared our theoretical results with experimental results on mod 2 nanotubes and found that our model provides satisfactory overall trends in the relative strengths of the coherent phonon signal both within and between different mod 2 families. We also find that the coherent phonon intensities are considerably weaker in mod 1 nanotubes in comparison with mod~2 nanotubes, which is also in excellent agreement with experiment.Comment: 21 pages, 22 figure

    Responses to ethanol in C57BL/6 versus C57BL/6 × 129 hybrid mice

    Get PDF
    Although genetic background alters responses to ethanol, there has not yet been a methodical quantification of differences in ethanol-related behaviors between inbred and hybrid mice commonly used in gene-targeting studies. Here, we compared C57BL/6NTac × 129S6/SvEvTac F1 hybrid mice (B6129S6) with C57BL/6NTac inbred mice (B6NT), and C57BL/6J × 129X1/SvJ (B6129X1) and C57BL/6J × 129S4/SvJae F1 hybrids (B6129S4) with C57BL/6J mice (B6J), in five commonly used tests: continuous access two-bottle choice drinking, intermittent limited-access binge drinking, ethanol clearance, ethanol-induced loss of the righting reflex, and conditioned place preference (CPP) for ethanol. We found that inbred B6J and B6NT mice showed greater ethanol preference and consumption than their respective hybrids when ethanol was continuously available. Within the intermittent limited-access drinking procedure, though all lines showed similar intake over eight drinking sessions, the average of all sessions showed that B6NT mice drank significantly more ethanol than B6129S6 mice. In addition, B6J mice consumed more ethanol than B6129X1 mice, although they drank less than B6129S4 mice. No differences in ethanol LORR duration were observed between inbred and hybrid mice. Although ethanol clearance was similar among B6J mice and their respective hybrids, B6NT mice cleared ethanol more rapidly than B6129S6 mice. All lines developed CPP for ethanol. Our findings indicate that it may not be necessary to backcross hybrids to an inbred B6 background to study many ethanol-related behaviors in gene-targeted mice

    Towards dynamically consistent real-time gait pattern generation for full-size humanoid robots

    No full text
    We propose a two-stage gait pattern generation scheme for the full-scale humanoid robots, that considers the dynamics of the system throughout the process. The fist stage is responsible for generating semi-dynamically consistent step position and step time information, while the second stage incorporated with multi-body dynamics system is responsible for generation of gait pattern that is feasible and stable on the full-scale multi-degree-of-freedom humanoid robot. The approach allows for very rapid gait pattern regeneration during the swing phase of motion and includes information about present dynamic state when regenerating the new pattern. The paper contains description of a developed method, as well as experimental results proving its effectiveness

    Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To

    Get PDF
    The combination of highly efficient polymerizations with modular "click" coupling reactions has enabled the synthesis of a wide variety of novel nanoscopic tructures. Here we demonstrate the facile synthesis of a new class of clickable, branched nanostructures, polyethylene glycol (PEG)-branch-azide bivalent-brush polymers, facilitated by "graft-through" ring-opening metathesis polymerization of a branched norbornene-PEG-chloride macromonomer followed by halide-azide exchange. The resulting bivalent-brush polymers possess azide groups at the core near a polynorbornene backbone with PEG chains extended into solution; the structure resembles a unimolecular micelle. We demonstrate copper-catalyzed azide-alkre cycloaddition (CuAAC) "click-to" coupling of a photocleavable doxorubicin (DOX)-alkyne derivative to the azide core. The CuAAC coupling was quantitative across a wide range of nanoscopic sizes (similar to 6-similar to 50 nrn); UV photolysis of the resulting DOX-loaded materials yielded free DOX that was therapeutically effective against human cancer cells

    ELECTROMYOGRAPHY AND KINEMATIC CHARACTERISTICS OF OBSTACLE GAIT IN ELDERLY PARKINSON’S PATIENTS

    Get PDF
    INTRODUCTION: Falls associated with tripping over an obstacle can be dangerous, yet little is known about the strategies used for stepping over obstacles in elderly Parkinson's patients. The purpose of this study was to investigate the lower extremity muscle activity and kinematics of obstacle gait in Parkinson's patients

    Influence of blade aerodynamic model on the prediction of helicopter high-frequency airloads

    Get PDF
    Brown’s vorticity transport model has been used to investigate the influence of the blade aerodynamic model on the accuracy with which the high-frequency airloads associated with helicopter blade–vortex interactions can be predicted. The model yields an accurate representation of the wake structure yet allows significant flexibility in the way that the blade loading can be represented. A simple lifting-line model and a somewhat more sophisticated liftingchord model, based on unsteady thin aerofoil theory, are compared. A marked improvement in the accuracy of the predicted high-frequency airloads of the higher harmonic control aeroacoustic rotor is obtained when the liftingchord model is used instead of the lifting-line approach, and the quality of the prediction is affected less by the computational resolution of the wake. The lifting-line model overpredicts the amplitude of the lift response to blade–vortex interactions as the computational grid is refined, exposing the fundamental deficiencies in this approach when modeling the aerodynamic response of the blade to interactions with vortices that are much smaller than its chord. The airloads that are predicted using the lifting-chord model are relatively insensitive to the resolution of the computation, and there are fundamental reasons to believe that properly converged numerical solutions may be attainable using this approach

    Influence of blade aerodynamic model on prediction of helicopter rotor aeroacoustic signatures

    Get PDF
    Brown’s vorticity transport model has been used to investigate how the local blade aerodynamic model influences the quality of the prediction of the high-frequency airloads associated with blade–vortex interactions, and thus the accuracy with which the acoustic signature of a helicopter rotor can be predicted. The vorticity transport model can accurately resolve the structure of the wake of the rotor and allows significant flexibility in the way that the blade loading can be represented. The Second Higher-Harmonic Control Aeroacoustics Rotor Test was initiated to provide experimental insight into the acoustic signature of a rotor in cases of strong blade–vortex interaction. Predictions of two models for the local blade aerodynamics are compared with the test data. A marked improvement in accuracy of the predicted high-frequency airloads and acoustic signature is obtained when a lifting-chord model for the blade aerodynamics is used instead of a lifting-line-type approach. Errors in the amplitude and phase of the acoustic peaks are reduced, and the quality of the prediction is affected to a lesser extent by the computational resolution of the wake, with the lifting-chord model producing the best representation of the distribution of sound pressure below the rotor

    Observation of twin beam correlations and quadrature entanglement by frequency doubling in a two-port resonator

    Get PDF
    We demonstrate production of quantum correlated and entangled beams by second harmonic generation in a nonlinear resonator with two output ports. The output beams at wavelength 428.5 nm exhibit 0.9 dB of nonclassical intensity correlations and 0.3 dB of entanglement.Comment: 5 pages, 7 figure

    Photon polarisation entanglement from distant dipole sources

    Full text link
    It is commonly believed that photon polarisation entanglement can only be obtained via pair creation within the same source or via postselective measurements on photons that overlapped within their coherence time inside a linear optics setup. In contrast to this, we show here that polarisation entanglement can also be produced by distant single photon sources in free space and without the photons ever having to meet, if the detection of a photon does not reveal its origin -- the which way information. In the case of two sources, the entanglement arises under the condition of two emissions in certain spatial directions and leaves the dipoles in a maximally entangled state.Comment: 7 pages, 2 figures, revised version, accepted for publication in J. Phys.
    corecore