705 research outputs found

    {\beta}-YbAlB4: a critical nodal metal

    Full text link
    We propose a model for the intrinsic quantum criticality of {\beta}-YbAlB4, in which a vortex in momentum space gives rise to a new type of Fermi surface singularity. The unquenched angular momentum of the |J = 7/2,m_J = \pm5/2> Yb 4f-states generates a momentum-space line defect in the hybridization between 4f and conduction electrons, leading to a quasi-two dimensional Fermi surface with a k\perp4 dispersion and a singular density of states proportional to E^{-1/2}. We discuss the implications of this line-node in momentum space for our current understanding of quantum criticality and its interplay with topology

    Use of in vitro Dynamic Colon Model (DCM) to inform a physiologically based biopharmaceutic model (PBBM) to predict the in vivo performance of a modified-release formulation of theophylline

    Get PDF
    A physiologically based biopharmaceutic model (PBBM) of a modified-release formulation of theophylline (Uniphyllin Continus® 200 mg tablet) was developed and implemented to predict the pharmacokinetic (PK) data of healthy male volunteers by integrating dissolution profiles measured in a biorelevant in vitro model: the Dynamic Colon Model (DCM). The superiority of the DCM over the United States Pharmacopeia (USP) Apparatus II (USP II) was demonstrated by the superior predictions for the 200 mg tablet (average absolute fold error (AAFE): 1.1–1.3 (DCM) vs. 1.3–1.5 (USP II). The best predictions were obtained using the three motility patterns (antegrade and retrograde propagating waves, baseline) in the DCM, which produced similar PK profiles. However, extensive erosion of the tablet occurred at all agitation speeds used in USP II (25, 50 and 100 rpm), resulting in an increased drug release rate in vitro and overpredicted PK data. The PK data of the Uniphyllin Continus® 400 mg tablet could not be predicted with the same accuracy using dissolution profiles from the DCM, which might be explained by differences in upper gastrointestinal (GI) tract residence times between the 200 and 400 mg tablets. Thus, it is recommended that the DCM be used for dosage forms in which the main release phenomena take place in the distal GI tract. However, the DCM again showed a better performance based on the overall AAFE compared to the USP II. Regional dissolution profiles within the DCM cannot currently be integrated into Simcyp®, which might limit the predictivity of the DCM. Thus, further compartmentalization of the colon within PBBM platforms is required to account for observed intra-regional differences in drug distribution

    Luminal fluid motion inside an in vitro dissolution model of the human ascending colon assessed using magnetic resonance imaging

    Get PDF
    Knowledge of luminal flow inside the human colon remains elusive, despite its importance for the design of new colon-targeted drug delivery systems and physiologically relevant in silico models of dissolution mechanics within the colon. This study uses magnetic resonance imaging (MRI) techniques to visualise, measure and differentiate between different motility patterns within an anatomically representative in vitro dissolution model of the human ascending colon: the dynamic colon model (DCM). The segmented architecture and peristalsis-like contractile activity of the DCM generated flow profiles that were distinct from compendial dissolution apparatuses. MRI enabled different motility patterns to be classified by the degree of mixing-related motion using a new tagging method. Different media viscosities could also be differentiated, which is important for an understanding of colonic pathophysiology, the conditions that a colon-targeted dosage form may be subjected to and the effectiveness of treatments. The tagged MRI data showed that the DCM effectively mimicked wall motion, luminal flow patterns and the velocities of the contents of the human ascending colon. Accurate reproduction of in vivo hydrodynamics is an essential capability for a biorelevant mechanical model of the colon to make it suitable for in vitro data generation for in vitro in vivo evaluation (IVIVE) or in vitro in vivo correlation (IVIVC). This work illustrates how the DCM provides new insight into how motion of the colonic walls may control luminal hydrodynamics, driving erosion of a dosage form and subsequent drug release, compared to traditional pharmacopeial methods

    Identification and characterization of the mitochondrial RNA polymerase and transcription factor in the fission yeast Schizosaccharomyces pombe

    Get PDF
    We have characterized the mitochondrial transcription factor (Mtf1) and RNA polymerase (Rpo41) of Schizosaccharomyces pombe. Deletion mutants show Mtf1 or Rpo41 to be essential for cell growth, cell morphology and mitochondrial membrane potential. Overexpression of Mtf1 and Rpo41 can induce mitochondrial transcription. Mtf1 and Rpo41 can bind and transcribe mitochondrial promoters in vitro and the initiating nucleotides were the same in vivo and in vitro. Mtf1 is required for efficient transcription. We discuss the functional differences between Mtf1 and Rpo41 of S. pombe with Saccharomyces cerevisiae and higher organisms. In contrast to S. cerevisiae, the established model for mitochondrial transcription, S. pombe, a petite-negative yeast, resembles higher organisms that cannot tolerate the loss of mitochondrial function. The S. pombe and human mitochondrial genomes are similar in size and much smaller than that of S. cerevisiae. This is an important first step in the development of S. pombe as an alternative and complementary model system for molecular genetic and biochemical studies of mitochondrial transcription and mitochondrial–nuclear interactions. This is the first systematic study of the cellular function and biochemistry of Rpo41 and Mtf1 in S. pombe

    Global distribution and diversity of marine Verrucomicrobia

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 6 (2012): 1499-1505, doi:10.1038/ismej.2012.3.Verrucomicrobia is a bacterial phylum that is commonly detected in soil but little is known about the distribution and diversity of this phylum in the marine environment. To address this, we analyzed the marine microbial community composition in 506 samples from the International Census of Marine Microbes as well as eleven coastal samples taken from the California Current. These samples from both the water column and sediments covered a wide range of environmental conditions. Verrucomicrobia were present in 98% of the analyzed samples and thus appeared nearly ubiquitous in the ocean. Based on the occurrence of amplified 16S rRNA sequences, Verrucomicrobia constituted on average 2% of the water column and 1.4% of the sediment bacterial communities. The diversity of Verrucomicrobia displayed a biogeography at multiple taxonomic levels and thus, specific lineages appeared to have clear habitat preference. We found that Subdivision 1 and 4 generally dominated marine bacterial communities, whereas Subdivision 2 was confined to low salinity waters. Within the subdivisions, Verrucomicrobia community composition were significantly different in the water column compared to sediment as well as within the water column along gradients of salinity, temperature, nitrate, depth, and overall water column depth. Although we still know little about the ecophysiology of Verrucomicrobia lineages, the ubiquity of this phylum suggests that it may be important for the biogeochemical cycle of carbon in the ocean.We would like to thank the UCI Undergraduate Research Opportunity Program (S.F.), the National Science Foundation (OCE-0928544 and OCE-1046297, A.C.M.) and the Alfred P. Sloan Foundation (S.H., D.M.W., M.S.) for supporting the work

    The pitfalls of plural valuation

    Get PDF
    This paper critically examines the current political context in which valuation studies of nature are undertaken. It challenges the belief that somehow, more and technically better valuation will drive the societal change toward more just and sustainable futures. Instead, we argue that current and proposed valuation practices risk to continue to overrepresent the values of those who hold power and dominate the valuation space, and to perpetuate the discrimination of the views and values of nondominant stakeholders. In tackling this politically sensitive issue, we define a political typology of valuations, making explicit the roles of power and discrimination. This is done to provide valuation professionals and other actors with a simple framework to determine if valuation actions and activities are constructive, inclusive, resolve injustices and enable systemic change, or rather entrench the status quo or aggravate existing injustices. The objective is to buttress actors in their decisions to support, accept, improve, oppose, or reject such valuations

    A new human chromogranin A (CgA) immunoradiometric assay involving monoclonal antibodies raised against the unprocessed central domain (145-245)

    Get PDF
    Chromogranin A (CgA), a major protein of chromaffin granules, has been described as a potential marker for neuroendocrine tumours. Because of an extensive proteolysis which leads to a large heterogeneity of circulating fragments, its presence in blood has been assessed in most cases either by competitive immunoassays or with polyclonal antibodies. In the present study, 24 monoclonal antibodies were raised against native or recombinant human CgA. Their mapping with proteolytic peptides showed that they defined eight distinct epitopic groups which spanned two-thirds of the C-terminal part of human CgA. All monoclonal antibodies were tested by pair and compared with a reference radioimmunoassay (RIA) involving CGS06, one of the monoclonal antibodies against the 198–245 sequence. It appears that CgA C-terminal end seems to be highly affected by proteolysis and the association of C-terminal and median-part monoclonal antibodies is inadequate for total CgA assessment. Our new immunoradiometric assay involves two monoclonal antibodies, whose contiguous epitopes lie within the median 145–245 sequence. This assay allows a sensitive detection of total human CgA and correlates well with RIA because dibasic cleavage sites present in the central domain do not seem to be affected by degradation. It has been proved to be efficient in measuring CgA levels in patients with neuroendocrine tumours. © 1999 Cancer Research Campaig
    corecore