705 research outputs found

    Theoretical study of electronic Raman scattering of Borocarbide superconductors

    Full text link
    The electronic Raman scattering of Borocarbide superconductors is studied based on the weak coupling theory with s+gs+g-wave gap symmetry. The low energy behaviors and the relative peak positions can be naturally understood, while the explanation of the detailed shape of the B1gB_{1g} peak seems to require a strong inelastic interaction not present in the weak coupling theory.Comment: Revtex 4 file, 9 pages and 5 figure

    Dispersive Gap Mode of Phonons in Anisotropic Superconductors

    Full text link
    We estimate the effect of the superconducting gap anisotropy in the dispersive gap mode of phonons, which is observed by the neutron scattering on borocarbide superconductors. We numerically analyze the phonon spectrum considering the electron-phonon coupling, and examine contributions coming from the gap suppression and the sign change of the pairing function on the Fermi surface. When the sign of the pairing function is changed by the nesting translation, the gap mode does not appear. We also discuss the suppression of the phonon softening of the Kohn anomaly due to the onset of superconductivity. We demonstrate that observation of the gap dispersive mode is useful for sorting out the underlying superconducting pairing function.Comment: 7 pages, 12 figures, to be published in J. Phys. Soc. Jp

    Violation of the isotropic-\ell approximation in overdoped La_{2-x}Sr_xCuO_4

    Full text link
    Magnetotransport measurements on the overdoped cuprate La_{1.7}Sr_{0.3}CuO_4 are fitted using the Ong construction and band parameters inferred from angle-resolved photoemission. Within a band picture, the low temperature Hall data can only be fitted satisfactorily by invoking strong basal-plane anisotropy in the mean-free-path \ell. This violation of the isotropic-\ell approximation supports a picture of dominant small-angle elastic scattering in cuprates due to out-of-plane substitutional disorder. We show that both band anisotropy and anisotropy in the elastic scattering channel strongly renormalize the Hall coefficient in overdoped La_{2-x}Sr_xCuO_4 over a wide doping and temperature range.Comment: 4 pages, 4 figure

    Fulde-Ferrell-Larkin-Ovchinnikov state in a perpendicular field of quasi two-dimensional CeCoIn5

    Get PDF
    A Fulde-Ferrell-Larkin-Ovchinnkov (FFLO) state was previously reported in the quasi-2D heavy fermion CeCoIn5 when a magnetic field was applied parallel to the ab-plane. Here, we conduct 115^In NMR studies of this material in a PERPENDICULAR field, and provide strong evidence for FFLO in this case as well. Although the topology of the phase transition lines in the H-T phase diagram is identical for both configurations, there are several remarkable differences between them. Compared to H//ab, the FFLO region for H perpendicular to the ab-plane shows a sizable decrease, and the critical field separating the FFLO and non-FFLO superconducting states almost ceases to have a temperature dependence. Moreover, directing H perpendicular to the ab-plane results in a notable change in the quasiparticle excitation spectrum within the planar node associated with the FFLO transition.Comment: 5 pages, 3 figure

    Josephson effect in a weak link between borocarbides

    Get PDF
    A stationary Josephson effect is analyzed theoretically for a weak link between borocarbide superconductors. It is shown that different models of the order parameter result in qualitatively different current-phase relations

    Orbital Degeneracy and Peierls Instability in Triangular Lattice Superconductor Ir1x_{1-x}Ptx_xTe2_2

    Full text link
    We have studied electronic structure of triangular lattice Ir1x_{1-x}Ptx_xTe2_2 superconductor using photoemission spectroscopy and model calculations. Ir 4f4f core-level photoemission spectra show that Ir 5d5d t2gt_{2g} charge modulation established in the low temperature phase of IrTe2_2 is suppressed by Pt doping. This observation indicates that the suppression of charge modulation is related to the emergence of superconductivity. Valence-band photoemission spectra of IrTe2_2 suggest that the Ir 5d5d charge modulation is accompanied by Ir 5d5d orbital reconstruction. Based on the photoemission results and model calculations, we argue that the orbitally-induced Peierls effect governs the charge and orbital instability in the Ir1x_{1-x}Ptx_xTe2_2.Comment: 5 pages,4 figure

    Spins in the Vortices of a High Temperature Superconductor

    Full text link
    Neutron scattering is used to characterise the magnetism of the vortices for the optimally doped high-temperature superconductor La(2-x)Sr(x)CuO(4) (x=0.163) in an applied magnetic field. As temperature is reduced, low frequency spin fluctuations first disappear with the loss of vortex mobility, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces are magnetic
    corecore