495 research outputs found

    PCAC Relation and Pion Production-Absorption in Nuclei

    Full text link
    Nuclear PCAC relation is studied in the framework of the effective theory of nuclear interaction, in which the interaction of real pion production-absorption is expressed by many-body operators, and does not include the one-nucleon operator as was assumed in the conventional works, while the effective axial-vector current includes the one-nucleon current in contrast to the former interaction. This problem is investigated under the simple linear σ\sigma-model. Results are as folows: 1) The theory describes consistently the PCAC relation and the pion production-absorption process. 2) The conventional interpretation of the effective pion source function as the interaction Hamiltonian of pion production-absorption does not hold. 3) The effective pion source function still includes the one-nucleon operator for the pion production-absorption at threshold effectively, which may justify the conventional theory.Comment: 12 pages, 3 figure

    Photoemission Properties of LaB6 and CeB6 Under Various Temperature and Incident Photon Energy Conditions

    Get PDF
    IPAC2016, Busan, KoreaPhotoemission properties of LaB₆ and CeB₆ were investigated at various cathode temperatures and different wavelengths of excitation laser to study for application of electron gun, especially for RF injector of infrared FEL facilities. It was found that the LaB₆ had higher photoemission property than CeB₆ at the same cathode temperature. In addition, LaB₆ can emit a measurable photoemission current being irradiated by laser with energy below work function at the cathode temperature higher than 1400 K. With increasing laser energy (over work function), a photoemission dependency on cathode temperature was getting lower. As the result, LaB₆ is revealed to have better properties than CeB₆ since LaB₆ has higher quantum efficiency than CeB₆ at same temperature

    The Group B Streptococcal Adhesin BspC Interacts with Host Cytokeratin 19 To Promote Colonization of the Female Reproductive Tract

    Get PDF
    Streptococcus agalactiae, otherwise known as Group B Streptococcus (GBS), is an opportunistic pathogen that vaginally colonizes approximately one third of healthy women. During pregnancy, this can lead to in utero infection, resulting in premature rupture of membranes, chorioamnionitis, and stillbirths. Furthermore, GBS causes serious infection in newborns, including sepsis, pneumonia, and meningitis. Previous studies have indicated that GBS antigen (Ag) I/II family proteins promote interaction with vaginal epithelial cells; thus, we hypothesized that the Ag I/II Group B streptococcal surface protein C (BspC) contributes to GBS colonization of the female reproductive tract (FRT). Here, we show that a ΔbspC mutant has decreased bacterial adherence to vaginal, ecto-, and endocervical cells, as well as decreased auto-aggregation and biofilm-like formation on cell monolayers. Using a murine model of vaginal colonization, we observed that the ΔbspC mutant strain exhibited a significant fitness defect compared to wild-type (WT) GBS and was less able to ascend to the cervix and uterus in vivo, resulting in reduced neutrophil chemokine signaling. Furthermore, we determined that BspC interacts directly with the host intermediate filament protein cytokeratin 19 (K19). Surface localization of K19 was increased during GBS infection, and interaction was mediated by the BspC variable (V) domain. Finally, mice treated with a drug that targets the BspC V-domain exhibited reduced bacterial loads in the vaginal lumen and reproductive tissues. These results demonstrate the importance of BspC in promoting GBS colonization of the FRT and that it may be targeted therapeutically to reduce GBS vaginal persistence and ascending infection

    A Low Percent Ethanol Method for Immobilizing Planarians

    Get PDF
    Planarians have recently become a popular model system for the study of adult stem cells, regeneration and polarity. The system is attractive for both undergraduate and graduate research labs, since planarian colonies are low cost and easy to maintain. Also in situ hybridization, immunofluorescence and RNA-interference (RNAi) gene knockdown techniques have been developed for planarian studies. However, imaging of live worms (particularly at high magnifications) is difficult because animals are strongly photophobic; they quickly move away from light sources and out of frame. The current methods available to inhibit movement in planarians include RNAi injection and exposure to cold temperatures. The former is labor and time intensive, while the latter precludes the use of many fluorescent reporter dyes. Here, we report a simple, inexpensive and reversible method to immobilize planarians for live imaging. Our data show that a short 1 hour treatment with 3% ethanol (EtOH) is sufficient to inhibit both the fine and gross movements of Schmidtea mediterranea planarians, of the typical size used (4–6 mm), with full recovery of movement within 3–4 hours. Importantly, EtOH treatment did not interfere with regeneration, even after repeated exposure, nor lyse epithelial cells (as assayed by H&E staining). We demonstrate that a short exposure to a low concentration of EtOH is a quick and effective method of immobilizing planarians, one that is easily adaptable to planarians of all sizes and will increase the accessibility of live imaging assays to planarian researchers

    Measurement and comparison of individual external doses of high-school students living in Japan, France, Poland and Belarus -- the "D-shuttle" project --

    Full text link
    Twelve high schools in Japan (of which six are in Fukushima Prefecture), four in France, eight in Poland and two in Belarus cooperated in the measurement and comparison of individual external doses in 2014. In total 216 high-school students and teachers participated in the study. Each participant wore an electronic personal dosimeter "D-shuttle" for two weeks, and kept a journal of his/her whereabouts and activities. The distributions of annual external doses estimated for each region overlap with each other, demonstrating that the personal external individual doses in locations where residence is currently allowed in Fukushima Prefecture and in Belarus are well within the range of estimated annual doses due to the background radiation level of other regions/countries

    Modeling Planarian Regeneration: A Primer for Reverse-Engineering the Worm

    Get PDF
    A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences—using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an engineering-like style for reviews of the molecular developmental biology of biomedically important model systems, significant fresh insights and quantitative computational models will be developed by new collaborations between biology and the information sciences
    corecore