323 research outputs found
Nonlinear sigma model study of a frustrated spin ladder
A model of two-leg spin-S ladder with two additional frustrating diagonal
exchange couplings J_{D}, J_{D}' is studied within the framework of the
nonlinear sigma model approach. The phase diagram has a rich structure and
contains 2S gapless phase boundaries which split off the boundary to the fully
saturated ferromagnetic phase when J_{D} and J_{D}' become different. For the
S=1/2 case, the phase boundaries are identified as separating two topologically
distinct Haldane-type phases discussed recently by Kim et al.
(cond-mat/9910023).Comment: revtex 4 pages, figures embedded (psfig
Quantum well infrared photodetectors hardiness to the non ideality of the energy band profile
We report results on the effect of a non-sharp and disordered potential in
Quantum Well Infrared Photodetectors (QWIP). Scanning electronic transmission
microscopy is used to measure the alloy profile of the structure which is shown
to present a gradient of composition along the growth axis. Those measurements
are used as inputs to quantify the effect on the detector performance (peak
wavelength, spectral broadening and dark current). The influence of the random
positioning of the doping is also studied. Finally we demonstrate that QWIP
properties are quite robust with regard to the non ideality of the energy band
profile
Quantum and classical criticalities in the frustrated two-leg Heisenberg ladder
This talk was about the frustration-induced criticality in the
antiferromagnetic Heisenberg model on the two-leg ladder with exchange
interactions along the chains, rungs, and diagonals, and also about the effect
of thermal fluctuations on this criticlity. The method used is the bond
mean-field theory, which is based on the Jordan-Wigner transformation in
dimensions higher than one. In this paper, we will summarize the main results
presented in this talk, and report on new results about the couplings and
temperature dependences of the spin susceptibility.Comment: 6 pages, 4 figures, talk presented at the Theory Canada 3 conference
in 2007, submitted to the Canadian Journal of Physic
Apparent close approaches between near-Earth asteroids and quasars. Precise astrometry and frame linking
Reproduced with permission. Copyright ESO. Article published by EDP Sciences and available at www.aanda.org.International audienceAims. We investigate the link between the International Celestial Reference Frame (ICRF) and the dynamical reference frame realized by the ephemerides of the Solar System bodies. Methods. We propose a procedure that implies a selection of events for asteroids with accurately determined orbits crossing the CCD field containing selected quasars. Using a Bulirsch-Stoer numerical integrator, we constructed 8-years (2010-2018) ephemerides for a set of 836 numbered near-Earth asteroids (NEAs). We searched for close encounters (within a typical field of view of groundbased telescopes) between our selected set of asteroids and quasars with high-accuracy astrometric positions extracted from the Large Quasars Astrometric Catalog (LQAC). Results. In the designated period (2010-2018), we found a number of 2924, 14 257, and 6972 close approaches (within 10') between asteroids with a minimum solar elongation value of 60âŠand quasars from the ICRF-Ext2, the Very Large Baseline Array Calibrator Survey (VLBA-CS), and the Very Large Array (VLA), respectively. This large number of close encounters provides the observational basis needed to investigate the link between the dynamical reference frame and the ICRF
String order in spin liquid phases of spin ladders
Two-leg spin ladders have a rich phase diagram if rung, diagonal and
plaquette couplings are allowed for. Among the possible phases there are two
Haldane-type spin liquid phases without local order parameter, which differ,
however, in the topology of the short range valence bonds. We show that these
phases can be distinguished numerically by two different string order
parameters. We also point out that long range string- and dimer orders can
coexist
Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag
We study the electrophoretic separation of polyelectrolytes of varying
lengths by means of end-labeled free-solution electrophoresis (ELFSE). A
coarse-grained molecular dynamics simulation model, using full electrostatic
interactions and a mesoscopic Lattice Boltzmann fluid to account for
hydrodynamic interactions, is used to characterize the drag coefficients of
different label types: linear and branched polymeric labels, as well as
transiently bound micelles.
It is specifically shown that the label's drag coefficient is determined by
its hydrodynamic size, and that the drag per label monomer is largest for
linear labels. However, the addition of side chains to a linear label offers
the possibility to increase the hydrodynamic size, and therefore the label
efficiency, without having to increase the linear length of the label, thereby
simplifying synthesis. The third class of labels investigated, transiently
bound micelles, seems very promising for the usage in ELFSE, as they provide a
significant higher hydrodynamic drag than the other label types.
The results are compared to theoretical predictions, and we investigate how
the efficiency of the ELFSE method can be improved by using smartly designed
drag-tags.Comment: 32 pages, 11 figures, submitted to Macromolecule
Ultraviolet and visible photometry of asteroid (21) Lutetia using the Hubble Space Telescope
The asteroid (21) Lutetia is the target of a planned close encounter by the
Rosetta spacecraft in July 2010. To prepare for that flyby, Lutetia has been
extensively observed by a variety of astronomical facilities. We used the
Hubble Space Telescope (HST) to determine the albedo of Lutetia over a wide
wavelength range, extending from ~150 nm to ~700 nm. Using data from a variety
of HST filters and a ground-based visible light spectrum, we employed synthetic
photometry techniques to derive absolute fluxes for Lutetia. New results from
ground-based measurements of Lutetia's size and shape were used to convert the
absolute fluxes into albedos. We present our best model for the spectral energy
distribution of Lutetia over the wavelength range 120-800 nm. There appears to
be a steep drop in the albedo (by a factor of ~2) for wavelengths shorter than
~300 nm. Nevertheless, the far ultraviolet albedo of Lutetia (~10%) is
considerably larger than that of typical C-chondrite material (~4%). The
geometric albedo at 550 nm is 16.5 +/- 1%. Lutetia's reflectivity is not
consistent with a metal-dominated surface at infrared or radar wavelengths, and
its albedo at all wavelengths (UV-visibile-IR-radar) is larger than observed
for typical primitive, chondritic material. We derive a relatively high FUV
albedo of ~10%, a result that will be tested by observations with the Alice
spectrograph during the Rosetta flyby of Lutetia in July 2010.Comment: 14 pages, 2 tables, 8 figure
The triaxial ellipsoid dimensions, rotational pole, and bulk density of ESA Rosetta target asteroid (21) Lutetia
We seek the best size estimates of the asteroid (21) Lutetia, the direction
of its spin axis, and its bulk density, assuming its shape is well described by
a smooth featureless triaxial ellipsoid, and to evaluate the deviations from
this assumption. Methods. We derive these quantities from the outlines of the
asteroid in 307 images of its resolved apparent disk obtained with adaptive
optics (AO) at Keck II and VLT, and combine these with recent mass
determinations to estimate a bulk density. Our best triaxial ellipsoid
diameters for Lutetia, based on our AO images alone, are a x b x c = 132 x 101
x 93 km, with uncertainties of 4 x 3 x 13 km including estimated systematics,
with a rotational pole within 5 deg. of ECJ2000 [long,lat] = [45, -7], or
EQJ2000 [RA, DEC] = [44, +9]. The AO model fit itself has internal precisions
of 1 x 1 x 8 km, but it is evident, both from this model derived from limited
viewing aspects and the radius vector model given in a companion paper, that
Lutetia has significant departures from an idealized ellipsoid. In particular,
the long axis may be overestimated from the AO images alone by about 10 km.
Therefore, we combine the best aspects of the radius vector and ellipsoid model
into a hybrid ellipsoid model, as our final result, of 124 +/- 5 x 101 +/- 4 x
93 +/- 13 km that can be used to estimate volumes, sizes, and projected areas.
The adopted pole position is within 5 deg. of [long, lat] = [52, -6] or[RA DEC]
= [52, +12]. Using two separately determined masses and the volume of our
hybrid model, we estimate a density of 3.5 +/- 1.1 or 4.3 +/- 0.8 g cm-3 . From
the density evidence alone, we argue that this favors an enstatite-chondrite
composition, although other compositions are formally allowed at the extremes
(low-porosity CV/CO carbonaceous chondrite or high-porosity metallic). We
discuss this in the context of other evidence.Comment: 9 pages, 8 figures, 5 tables, submitted to Astronomy and Astrophysic
739 observed NEAs and new 2-4m survey statistics within the EURONEAR network
We report follow-up observations of 477 program Near-Earth Asteroids (NEAs)
using nine telescopes of the EURONEAR network having apertures between 0.3 and
4.2 m. Adding these NEAs to our previous results we now count 739 program NEAs
followed-up by the EURONEAR network since 2006. The targets were selected using
EURONEAR planning tools focusing on high priority objects. Analyzing the
resulting orbital improvements suggests astrometric follow-up is most important
days to weeks after discovery, with recovery at a new opposition also valuable.
Additionally we observed 40 survey fields spanning three nights covering 11 sq.
degrees near opposition, using the Wide Field Camera on the 2.5m Isaac Newton
Telescope (INT), resulting in 104 discovered main belt asteroids (MBAs) and
another 626 unknown one-night objects. These fields, plus program NEA fields
from the INT and from the wide field MOSAIC II camera on the Blanco 4m
telescope, generated around 12,000 observations of 2,000 minor planets (mostly
MBAs) observed in 34 square degrees. We identify Near Earth Object (NEO)
candidates among the unknown (single night) objects using three selection
criteria. Testing these criteria on the (known) program NEAs shows the best
selection methods are our epsilon-miu model which checks solar elongation and
sky motion and the MPC's NEO rating tool. Our new data show that on average 0.5
NEO candidates per square degree should be observable in a 2m-class survey (in
agreement with past results), while an average of 2.7 NEO candidates per square
degree should be observable in a 4m-class survey (although our Blanco
statistics were affected by clouds). At opposition just over 100 MBAs (1.6
unknown to every 1 known) per square degree are detectable to R=22 in a 2m
survey based on the INT data, while our two best ecliptic Blanco fields away
from opposition lead to 135 MBAs (2 unknown to every 1 known) to R=23.Comment: Published in Planetary and Space Sciences (Sep 2013
- âŠ