4,623 research outputs found

    The Orbital Structure of Dark Matter Halos with Gas

    Full text link
    With the success of the Chandra and XMM missions and the maturation of gravitational lensing techniques, powerful constraints on the orbital structure of cluster dark matter halos are possible. I show that the X-ray emissivity and mass of a galaxy cluster uniquely specify the anisotropy and velocity dispersion profiles of its dark matter halo. I consider hydrostatic as well as cooling flow scenarios, and apply the formalism to the lensing cluster CL0024+16 and the cooling flow cluster Abell 2199. In both cases, the model predicts a parameter-free velocity dispersion profile that is consistent with independent optical redshift surveys of the clusters.Comment: 17 pages, 12 figures; to appear in the Astrophysical Journa

    A civil society perspective on inequalities: the COVID-19 revision

    Get PDF
    This paper re-examines the ‘civil society perspective’ on engaging in strategy that can respond to the current rapidly changing context by unpacking the roles of civil society organisations throughout the pandemic. The evidence collected through this research shows the need to recognize civil society’s efforts and contributions to the wellbeing of their communities

    Nonlinear Modes of Liquid Drops as Solitary Waves

    Full text link
    The nolinear hydrodynamic equations of the surface of a liquid drop are shown to be directly connected to Korteweg de Vries (KdV, MKdV) systems, giving traveling solutions that are cnoidal waves. They generate multiscale patterns ranging from small harmonic oscillations (linearized model), to nonlinear oscillations, up through solitary waves. These non-axis-symmetric localized shapes are also described by a KdV Hamiltonian system. Recently such ``rotons'' were observed experimentally when the shape oscillations of a droplet became nonlinear. The results apply to drop-like systems from cluster formation to stellar models, including hyperdeformed nuclei and fission.Comment: 11 pages RevTex, 1 figure p

    Statistics of Advective Stretching in Three-dimensional Incompressible Flows

    Get PDF
    We present a method to quantify kinematic stretching in incompressible, unsteady, isoviscous, three-dimensional flows. We extend the method of Kellogg and Turcotte (J. Geophys. Res. 95:421–432, 1990) to compute the axial stretching/thinning experienced by infinitesimal ellipsoidal strain markers in arbitrary three-dimensional incompressible flows and discuss the differences between our method and the computation of Finite Time Lyapunov Exponent (FTLE). We use the cellular flow model developed in Solomon and Mezic (Nature 425:376–380, 2003) to study the statistics of stretching in a three-dimensional unsteady cellular flow. We find that the probability density function of the logarithm of normalised cumulative stretching (log S) for a globally chaotic flow, with spatially heterogeneous stretching behavior, is not Gaussian and that the coefficient of variation of the Gaussian distribution does not decrease with time as t−12t^{-\frac{1}{2}} . However, it is observed that stretching becomes exponential log S∼t and the probability density function of log S becomes Gaussian when the time dependence of the flow and its three-dimensionality are increased to make the stretching behaviour of the flow more spatially uniform. We term these behaviors weak and strong chaotic mixing respectively. We find that for strongly chaotic mixing, the coefficient of variation of the Gaussian distribution decreases with time as t−12t^{-\frac{1}{2}} . This behavior is consistent with a random multiplicative stretching process

    The statistics of particle velocities in dense granular flows

    Full text link
    We present measurements of the particle velocity distribution in the flow of granular material through vertical channels. Our study is confined to dense, slow flows where the material shears like a fluid only in thin layers adjacent to the walls, while a large core moves without continuous deformation, like a solid. We find the velocity distribution to be non-Gaussian, anisotropic, and to follow a power law at large velocities. Remarkably, the distribution is identical in the fluid-like and solid-like regions. The velocity variance is maximum at the core, defying predictions of hydrodynamic theories. We show evidence of spatially correlated motion, and propose a mechanism for the generation of fluctuational motion in the absence of shear.Comment: Submitted to Phys. Rev. Let

    When One Pipeline Is Not Enough

    Get PDF
    Pipelines that operate on buffers often work well to mitigate the high latency inherent in interprocessor communication and in accessing data on disk. Running a single pipeline on each node works well when each pipeline stage consumes and produces data at the same rate. If a stage might consume data faster or slower than it produces data, a single pipeline becomes unwieldy. We describe how we have extended the FG programming environment to support multiple pipelines in two forms. When a node might send and receive data at different rates during interprocessor communication, we use disjoint pipelines that send and receive on each node. When a node consumes and produces data from different streams on the node, we use multiple pipelines that intersect at a particular stage. Experimental results for two out-of-core sorting algorithms---one based on columnsort and the other a distribution-based sort---demonstrate the value of multiple pipelines
    • …
    corecore