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Abstract We present a method to quantify kinematic stretching in incompressible, un-
steady, isoviscous, three-dimensional flows. We extend the method of Kellogg and Tur-
cotte (J. Geophys. Res. 95:421–432, 1990) to compute the axial stretching/thinning experi-
enced by infinitesimal ellipsoidal strain markers in arbitrary three-dimensional incompress-
ible flows and discuss the differences between our method and the computation of Finite
Time Lyapunov Exponent (FTLE). We use the cellular flow model developed in Solomon
and Mezic (Nature 425:376–380, 2003) to study the statistics of stretching in a three-
dimensional unsteady cellular flow. We find that the probability density function of the
logarithm of normalised cumulative stretching (logS) for a globally chaotic flow, with spa-
tially heterogeneous stretching behavior, is not Gaussian and that the coefficient of variation
of the Gaussian distribution does not decrease with time as t−

1
2 . However, it is observed

that stretching becomes exponential logS ∼ t and the probability density function of logS

becomes Gaussian when the time dependence of the flow and its three-dimensionality are in-
creased to make the stretching behaviour of the flow more spatially uniform. We term these
behaviors weak and strong chaotic mixing respectively. We find that for strongly chaotic
mixing, the coefficient of variation of the Gaussian distribution decreases with time as t−

1
2 .

This behavior is consistent with a random multiplicative stretching process.

Keywords Kinematic mixing · Chaos · Multiplicative process

1 Introduction

Kinematic mixing in fluids is an important area of research and has wide ranging applica-
tions in fields like chemical engineering, materials science, geology, and geophysics. Kine-
matic mixing in a flow field neglects diffusive mixing. Significant work has been done to
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quantify kinematic mixing in two and three-dimensional flows. Some of the methods em-
ployed to study mixing include: theoretical studies on computing the stable and unstable
manifolds of vortex ring flows [31, 33], theoretical [32, 39] and experimental [9] work on
calculating advective flux as a measure of mixing in Taylor-Couette flows, theoretical work
on quantifying mixing from stretching distributions [25, 30] of passive markers or power
spectra of passive scalars [2] and numerous other theoretical [3, 13, 18, 25, 27, 28] and ex-
perimental [7, 8, 13, 18, 27, 28, 37, 38] tracer advection studies in two dimensional flows.
Relatively fewer theoretical, [1, 11, 20, 29, 35] and experimental [11, 12, 16, 17, 21, 26, 35]
tracer advection studies have been carried out in three-dimensional flows as well.

Mixing in fluids is achieved through stretching/thinning, stirring, folding, and diffusion
of heterogeneities [26, 29]. Stretching increases the contact area between fluid elements,
stirring transports these elements, while folding brings distant fluid elements into proximity,
and diffusion helps local homogenization. Since in most known flows all these quantities
are spatially and temporally heterogeneous, a complete treatise on mixing that involves all
these parameters is currently unavailable. However, it can be argued that fast exponential
stretching is a characteristic of efficient mixing [26]. Exponential stretching is generally
associated with stagnation point flows. In this paper we compute the stretching in the three
principal orthogonal directions associated with an ellipsoidal tracer as it moves in a 3D
incompressible, unsteady flow.

Stretching of material lines or divergence of nearby tracer trajectories grows exponen-
tially in chaotic flows. This exponential growth can be associated with a positive Lyapunov
exponent. Lyapunov exponents are the time averaged measure of the separation of a set
of perturbed orthogonal initial conditions. They provide a measure of chaos in dynamical
systems [40]. A n-dimensional phase space has n Lyapunov exponents characterising the
n-orthogonal Lyapunov directions [40].

The distribution, self-similarity and multifractal properties of stretching fields and Lya-
punov exponents have been well studied [4, 16, 17, 25, 27, 29] for 2D globally chaotic
flows and those exhibiting regular elliptic islands in their Poincaré section. Relatively fewer
studies exist for fully 3D flows. Consensus, however, does not exist on the asymptotic dis-
tribution of the Lyapunov exponents or stretching fields [4].

In this paper we develop a method to quantify stretching associated with the three princi-
pal axes of an infinitesimal strain ellipsoid. We then use our method to compute the stretch-
ing in the time-dependent, 3D cellular flow model developed in Solomon and Mezic [34]. We
proceed to show that as the flow becomes more uniformly chaotic, the probability density
function (PDF) of the logarithm of stretching exhibits a Gaussian behavior, implying that
the most efficient stretching exhibits a log normal trend. The time evolution of the Gaussian
behavior is then associated with a random multiplicative process. Based on our study we
also suggest that only those flows which are both globally chaotic and exhibit similar La-
grangian dynamics throughout the flow domain will exhibit a linear increase in time of both
the variance and the mean of stretching distribution.

2 Deformation of a Ellipsoidal Inclusion

Chaotic flows produce rapid stretching and thinning resulting in fast efficient mixing, while
non-chaotic flows are comparatively slower. Hence to understand the nature and efficiency
of mixing in complex flow fields, one has to understand the ability of the flow to stretch
and thin passive inclusions. Here we extend the method of Kellogg and Turcotte [19] to
compute the stretching associated with and orientation of the axes of ellipsoidal inclusions.
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Fig. 1 (Color online) The
deformation of the ellipsoidal
marker as it moves along its
particle path

The deformation of elliptical strain markers has previously been considered in 2D viscous
flows representing convection in Earths mantle and draws on a long history of work on
deformation of markers in geological flows [6, 24].

To quantify the stretching associated with a chaotic flow, we introduce infinitesimal, pas-
sive, ellipsoidal strain markers into a specified cellular flow field. The characteristic length
and velocity scales are used to non-dimensionalize the prescribed flow field. The three-
dimensional flow field is given as U(x, t) in the Eulerian coordinate system x. In order to
carry out our analysis we introduce two new coordinates. First, we denote the position of the
tracer by X. The velocity of the fluid at the location of the tracer is then given by U(X, t).
Second, the coordinates defined by the principal axis a, b, and c of the ellipsoid are denoted
by X′. The velocity field in this coordinate is responsible for the stretching and rotation of
the ellipsoid and is denoted as U′(X′, t ).

Consider a fluid ellipsoidal inclusion defined by �(X′, t) = C in a fluid matrix. Because
the volume of the ellipsoid does not change, C is a constant. The “prime” superscript de-
notes a rotating frame in which the ellipsoid is defined. This frame rotates along-with the
ellipsoid as it moves along its particle path and is aligned with the principal component axes
as illustrated in Fig. 1. The kinematic boundary condition for the ellipsoid requires

∂�

∂t
+ Ẋ′.∇� = 0 (1)

where

� = X′T GX′, X′ ∈ R (2)

Ẋ′ is the velocity of the ellipsoid and G is the inverse square of the respective axes of the
ellipsoid.

G =
⎛
⎝

g11(t) 0 0,

0 g22(t) 0,

0 0 g33(t)

⎞
⎠

where

g11(t) = 1

a(t)2 , (3)

g22(t) = 1

b(t)2 , (4)

g33(t) = 1

c(t)2 (5)

a(t), b(t), c(t) are the lengths of the principal axes at time t . Initially at t = 0 we take a0 >

b0 > c0. At later times, for the model flow considered in this paper, we find that this ordering
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of lengths is maintained so that a(t) > b(t) > c(t). We define the cumulative stretching of
the ellipsoidal inclusion by

S(t) = a(t)

a0
(6)

For our chaotic mixing field we find that S(t) has an exponential dependence on time so that

λ = 1

t
ln S (7)

is applicable. There is clearly a close association of λ with the Lyapunov exponent. Any
orthogonal coordinate system with origin at the center of the ellipsoid, and orientation par-
allel to the Eulerian coordinate system X can be made to coincide with a coordinate system
defined by the axes of the ellipsoid through a rotation matrix. Thus, the fixed coordinates X
is mapped to the rotating coordinates X′ through the rotation matrix R. The rotation matrix
provides an orthogonal transformation from the fixed coordinates to the rotating coordinates.

X′ = RX (8)

R = Rx(ψ)Ry(θ)Rz(φ) (9)

The angles (φ, θ,ψ) are the rotations required about the coordinate system corresponding
to X, to align it with the coordinate system defined by the principal axes of the ellipsoid (
X′). The order of rotation about the axis is given by z-first, y-second, x-third. This rotation
matrix R(φ, θ,ψ) is given by,

⎛
⎜⎝

cosφ cos θ cosφ sin θ sinψ + sinφ cosψ − cosφ sin θ cosψ + sin θ sinψ

− sinφ cos θ − sinφ sin θ sinψ + cosφ cosψ sinφ sin θ cosψ + cosφ sinψ

sin θ − cos θ sinψ cos θ cosψ

⎞
⎟⎠

Differentiating (8) with respect to time we have

Ẋ′ = RẊ + ṘRT X′ (10)

which can be rewritten as

RẊ = Ẋ′ − ṘRT X′ (11)

Thus the velocity of the fluid in rotating coordinates is a function of its apparent velocity
and a component related to the rate of rotation of the principal axes of the ellipsoid. Thus,

U′ = Ẋ′ + �X′ (12)

with � = RṘT (since RṘT = −ṘRT ). Since we are using infinitesimal strain markers with
the same material properties as the matrix, the velocity field of the fluid is not perturbed by
the marker. We postulate that the motion takes a linear form and the velocity field can be
written as a function of the strain rate tensor and position vector as

U = Ẋ = 	X (13)

and

U′ = 	′X′ (14)
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where 	 and 	′ are the deformation gradient tensor in the fixed and rotating axes. The linear
velocity field serves as a local approximation to a smooth, general velocity field.

	′ =
⎛
⎜⎝

ε′
11 ε′

12 − ω′
12 ε′

13 + ω′
13

ε′
12 + ω′

12 ε′
22 ε′

23 − ω′
23

ε′
13 − ω′

13 ε′
23 + ω′

23 ε′
33

⎞
⎟⎠

where ε′ and ω′ are the strain rate and vorticity components respectively in the framework
of the rotating axes and are given by,

ε′
ij = 1

2

(
∂u′

i

∂X′
j

+ ∂u′
j

∂X′
i

)
, (15)

ω′
12 = 1

2

(
∂v′

∂X′ − ∂u′

∂Y ′

)
, (16)

ω′
13 = 1

2

(
∂u′

∂Z′ − ∂w′

∂X′

)
, (17)

ω′
23 = 1

2

(
∂w′

∂Y ′ − ∂v′

∂Z′

)
(18)

u′, v′ and w′ are the components of the fluid velocity field U ′ in the rotating axes and,

	 =
⎛
⎝

ε11 ε12 − ω12 ε13 + ω13

ε12 + ω12 ε22 ε23 − ω23

ε13 − ω13 ε23 + ω23 ε33

⎞
⎠

where ε and ω are the strain rate and vorticity components respectively in the framework of
the fixed axes and are given by,

εij = 1

2

(
∂ui

∂Xj

+ ∂uj

∂Xi

)
, (19)

ω12 = 1

2

(
∂v

∂X
− ∂u

∂Y

)
, (20)

ω13 = 1

2

(
∂u

∂Z
− ∂w

∂X

)
, (21)

ω23 = 1

2

(
∂w

∂Y
− ∂v

∂Z

)
(22)

u,v and w are the components of the fluid velocity field U in the fixed axes. The velocity
gradient tensor in the rotating frame (	′) is related to velocity gradient tensor in the fixed
frame (	) by

	′ = R	RT + ṘRT (23)

Substituting (12) into (1) we obtain,

∂�

∂t
+ U′ · ∇� − �X′ · ∇� = 0 (24)
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Therefore, substituting (2) and (14) into (24) we obtain,

Ġ + G	′ + 	′T G = �G − G� (25)

Equation (25) thus gives us the following six coupled ordinary differential equations
(ODEs), which describe the evolution of the axes of the ellipsoid and the angles of rota-
tion between the ellipsoidal axis and the fixed axes.

ġ11 + 2g11ε
′
11 = 0, (26)

ġ22 + 2g22ε
′
22 = 0, (27)

ġ33 − 2g33(ε
′
11 + ε′

22) = 0, (28)

(g11 + g22)ε
′
12 + (g22 − g11)ω

′
12 = 0, (29)

(g11 + g33)ε
′
13 + (g11 − g33)ω

′
13 = 0, (30)

(g33 + g22)ε
′
23 + (g33 − g22)ω

′
23 = 0 (31)

Therefore, given 	 in the fixed coordinates, one can compute 	′ for the rotating coordinates
and hence the evolution of the axes of the ellipsoid. The above equations give us a simple and
robust formulation for computing the stretching/thinning associated with ellipsoidal tracers
in three-dimensional flows. It must be noted that the method can be used for steady as well
as unsteady flows.

The time averaged measure of the stretching experienced by the strain ellipsoid, in the
three orthogonal directions, is equivalent to the three Lyapunov exponents of the flow com-
puted at the starting point of the tracer, however, not identical. Computing the stretching
experienced by the tracer in the strain basis provides a much sharper picture of the under-
lying dynamics of the flow than computing the Lyapunov exponent which is simply the
maximal stretching. To demonstrate this we have shown the stretching map calculated for
three grids of 212×212 tracers starting in the x = 0, y = 2π and z = 2π plane, respectively,
for the ABC flow at time t = −8. The parameters A, B , C were chosen as

√
3,

√
2, 1 re-

spectively. The particular time and parameters were chosen to make a comparison with the
work of Haller [15]. The t = −8 stretching map shown in Fig. 2 is different than the Lya-
punov exponent map show in Fig. 6 of Haller [15]. As Haller [15] points out, the direct
Lyapunov exponent map does not bring out the resonant tori visible in the Type 7 hyper-
bolicity plot (shown in Fig. 6 of Haller [15]), in our method, however, it is clearly visible
(shown in Fig. 2). While it has been pointed out that using the eigenvectors of the strain rate
tensor, as basis, to locate hyperbolic structures, in general, is not advantageous [14, 22], the
same cannot be said for computing the stretching of the infinitesimal tracers in the strain
basis. In the latter case, using the strain basis is necessary in order to evaluate the stretching
experienced by the ellipsoid in its current configuration.

Typically to compute the Lyapunov exponent associated with a flow, one computes the
square root of the eigenvalues of the discrete, left or right, Cauchy-Green tensor at various
points in the flow at prescribed times. In order to evolve the components of the Cauchy-
Green tensor through time, one could either compute the time evolution of the deformation
gradient tensor (by using the velocity gradient tensor) [24] or use a flow map [15]. If the
velocity gradient tensor is used to compute the components of the Cauchy-Green tensor (by
forming the deformation gradient tensor), 12 ODEs per tracer per time step would have to
be solved as opposed to solving 9 ODEs per tracer per time step (3 equations of motion
and equations 26–31) by our method. Alternatively using the method suggested by [15]



932 N. Subramanian et al.

Fig. 2 (Color online) The
backward time stretching map for
the ABC flow, A = √

3, B = √
2,

C = 1. A grid of 212 × 212 strain
ellipsoids was used to compute
the stretching map. The resonant
tori [10] are clearly visible as
light green regions

requires computing 9 spatial gradients (preferably centered differenced) and solving 3 ODEs
at each time step. Irrespective of which of these two methods is used to compute the discrete
Cauchy-Green tensor our method is neither more expensive nor more complex.

Also note that the strain marker is placed into a model of physical, not phase space; it is
a marker in a fluid flow, not a tracer following the evolution of a set of equations describing
a complex dynamical system. The equations describing a chaotic dynamical system may
have any number of degrees of freedom, with the corresponding number of Lyapunov ex-
ponents. A simple example would be the classical Lorenz equations [23], with 3 degrees of
freedom; that system of equations approximates convection behavior in the atmosphere in
an extremely truncated model. In contrast, whatever the number of degrees of freedom of
the equations governing the flow, a strain marker in an incompressible fluid has 6 degrees of
freedom: the 3 axes of its principal components, together with the 3 directions that describe
the orientation of the principal axes of the strain ellipsoid. We place the infinitesimal strain
marker in the fluid, and then calculate the resulting strain (the evolution of the principal
axes) and change in orientation. Because volume is conserved, the change in length of each
principal axis is related to the other principal axes. As one axes lengthens, another must
shorten; the result may be a nearly spherical ellipsoid (with little cumulative deformation), a
cigar shape (in which one axis grows exponentially), or a pancake (in which two axes grow).
Also the strain ellipsoid can experience exponential stretching and thinning even in a flow
that is not chaotic. An example would be the “pure shear” case, in which a strain ellipsoid is
placed in a stagnation point with steady, continuous stretching on one set of axes and steady
thinning in an orthogonal direction. Computing deformation of strain markers reflects the
processes that lead directly to mixing by determining the rate of increase of the surface area
of heterogeneities.

In spite of the close association between the stretching experienced by the strain ellipsoid
and the Lyapunov exponent in fluid flows, keeping in mind the physical significance of
stretching, the rest of this manuscript discusses the stretching properties of the flow rather
than the Lyapunov exponent.

3 Deformation of Markers in a Cellular Flow

In this section we study the statistics of stretching of infinitesimal ellipsoidal markers in the
three-dimensional unsteady flow introduced by [34]. The velocity field in their cellular flow
model is given by

u = − cos(πxs(t)) sin(πy) + ε sin(2πxs(t)) sin(πz), (32)
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Table 1 The parameter values and a brief description of the three different models considered

Model number ω ε b Description

Model 1 2.5 0.005 0.01 Weakly 3D and time-dependent. Driving frequency is

resonant with circulation frequency

Model 2 4.0 0.005 0.01 Weakly 3D and weakly time-dependent. Driving frequency is

not resonant with circulation frequency

Model 3 2.5 0.01 0.09 Weakly 3D and moderately time-dependent. Driving frequency is

resonant with circulation frequency

Model 4 2.5 1.000 1.00 Strongly 3D and strongly time-dependent

v = sin(πxs(t)) cos(πy) + ε sin(2πy) sin(πz), (33)

w = 2ε cos(πz)[cos(2πxs(t)) + cos(2πy)], (34)

xs(t) = x + b sinωt (35)

where b and ω represent the dimensionless oscillation amplitude and frequency and the 3D
component of the flow is characterized by ε. The flow is confined to the region −0.5 ≤
y ≤ 0.5 and −0.5 ≤ z ≤ 0.5 and the boundaries are free slip (zero shear). The flow in the
x-direction is periodic but time-dependent. As pointed out by [34], the flow considered in
this paper emulates properties exhibited by laminar vortex flows. Since vortical flows are
commonly encountered in natural processes, studies done here must be widely applicable.
Also, the flow has been well studied [34, 36] and allows for independent control of the
amplitude of time dependence and three-dimensionality of the velocity field, which allows
us to study their relative controls on stretching and hence mixing.

In this paper we consider a suite of models with varying ε and b. We present graphs and
figures for four models with the parameter values ω, ε, and b given in Table 1. The models
represent,

1. Model 1 (ω = 2.5, ε = 0.005 and b = 0.01): Is weakly three-dimensional and time-
dependent and resembles a vortical flow bounded by solid boundaries (example of par-
ticle path shown in Fig. 3(a)). The circulation frequency is resonant with the driving
frequency and results in weakly chaotic mixing.

2. Model 2 (ω = 4.0, ε = 0.005 and b = 0.01): Similar to Model 1, this model is also weakly
three-dimensional and time-dependent and resembles a vortical flow bounded by solid
boundaries. However, unlike Model 1, the circulation frequency is not resonant with the
driving frequency. This difference leads to the presence of regular elliptic islands in the
flow and results in inefficient mixing.

3. Model 3 (ω = 2.5, ε = 0.01 and b = 0.09): Is moderately three-dimensional and time-
dependent and still resembles a vortical flow bounded by solid boundaries. The circula-
tion frequency is resonant with driving frequency. This model is more three-dimensional
and time dependent than Models 1 and 2 and lies on the transition between weak chaotic
mixing and strong chaotic mixing.

4. Model 4 (ω = 2.5, ε = 1.0 and b = 1.0): Is strongly three-dimensional and time-
dependent. The particle path topology is significantly different from Models 1, 2, and
3, the particle paths do not lie on toric surfaceslike the previous models (example of
particle path shown in Fig. 3(b)). This model exhibits strong chaotic mixing.
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Fig. 3 (Color online) The three-dimensional particle paths of a tracer initially at (1.1, 0, 0).
(a) ω = 2.5, ε = 0.005 and b = 0.01. (b) ω = 2.5, ε = 1 and b = 1. Note the vortex nature of the path on
the left and the lack thereof on the right. Increasing three-dimensionality and time dependence breaks down
the vortex structure of the flow, particle paths start wandering in the domain

The first two models were considered previously [34] and are weakly three-dimensional and
time-dependent. The case ω = 2.5 exhibits chaotic mixing, whereas ω = 4 shows inefficient
mixing due to the presence of regular elliptic islands, however, in both models particle paths
are confined to toric surfaces. These authors attribute the uniform mixing of Model 1 to a
resonance between the driving frequency and the circulation frequency of the flows. The
third model is weakly three-dimensional and moderately time-dependent. The strength of
the three-dimensional component of the velocity field is twice as strong and the amplitude
of time dependence nine times as strong compared to Models 1 and 2. The fourth model is
strongly 3D and time-dependent (ε = 1, b = 1), there is complete breakdown of structure
and the flow is uniformly globally chaotic. The four models were chosen to show the differ-
ences in the stretching distributions as the flow tends towards uniform global chaos. In par-
ticular, the three Models 1, 3, and 4 show the gradual transformation from weak chaotic mix-
ing to strong chaotic mixing. In the following section we present the results of our stretching
calculations for the four different models. We then proceed to describe the statistics of the
PDF (probability density function) of the logarithm of stretching.

The non-dimensional box aspect ratio is 2 × 1 × 1 in the x × y × z directions. We place
500 ellipsoidal tracers along the line (−0.5, 0, 0) × (1.5, 0, 0) spaced 0.004 apart. The
stretching and orientation of the principal axes are calculated from (26)–(31) as the ellipsoid
moves along its particle path. The ellipsoidal tracers are initially roughly circular, the differ-
ence between axes being 1%. Since the marker is infinitesimal, strain rate and vorticity at
each step are calculated assuming the tracer is a point. The integration for both particle trac-
ing and extension calculation is done using a step-adaptive fifth order Runge-Kutta method.
The results shown below are for the normalized stretching of the maximum principal axis
(S = a

a0
).

4 Stretching Results

Time-dependent calculations were carried out to determine the cumulative stretching of each
tracer S as a function of time t . Typical examples of the time evolution of the three principal
axes of an ellipsoidal tracer particle are given in Fig. 4 for Models 1 and 4. The maximum
principal axis S = a

a0
grows nearly exponentially (log10 is used), the minimum principal
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Fig. 4 (Color online) Stretching, defined as logS, for the three ellipsoidal axes are plotted as a function of
time t for Models 1 and 4. The tracer was initially located at (1.1, 0, 0) in both models. In both figures
the red line indicates the fastest growing axis ( a

a0
), blue line the intermediate axis ( b

b0
), and green line the

shortening axis ( c
c0

). The black line is the best fit line for the stretching of the maximum principal axis.
(a) Model 1 ω = 2.5, ε = 0.005, b = 0.01. Slope of the best fit line is 0.045 and the value of λ, given by (7),
is 0.104. (b) Model 4 ω = 2.5, ε = 1, b = 1. Slope of the best fit line is 0.356 and the value of λ, given by (7),
is 0.820

Fig. 5 (Color online) Stretching and Poincaré section for Model 1 (ω = 2.5, ε = 0.005 and b = 0.01).
(a) The cumulative stretching logS at t = 400 is given as a function of the initial position x0 of the tracers.
(b) Poincaré section of the z = 0 crossing of a single tracer with initial position (1.1, 0, 0) is shown. In this
and subsequent figures, we consider only the stretching of the maximum principal axis, S = a

a0

axis S = c
c0

decreases nearly exponentially, and the intermediate principal axis S = b
b0

is
nearly constant. We find that stretching in Model 4 is ∼8 times stronger than in Model 1.
The exponential stretching rate given by (7), for a test tracer starting at (1.1, 0, 0) is found to
be λ = 0.104 for Model 1 and λ = 0.820 for Model 4. This difference in the stretching rate
of the test tracer between the two models is a result of the strong chaos present in Model 4
compared to Model 1.

In Figs. 5(a)–8(a) we give the cumulative stretching logS at a specified time as a function
of the initial position of the tracers for the four models. In Figs. 5(b)–8(b) the Poincaré
sections of z = 0 crossings of a single tracer with initial position (1.1, 0, 0) are shown for
the four models.

For Models 1 and 2 the stretching in chaotic regions (peaks in Figs. 5(a), 6(a) and
filled regions in Figs. 5(b), 6(b)) is much higher than the regular regions. The stretching
for Model 1 (ω = 2.5, ε = 0.005 and b = 0.01) is more uniform compared to Model 2
(ω = 4.0, ε = 0.005 and b = 0.01). Model 3 (ω = 2.5, ε = 0.01, and b = 0.09), shown in



936 N. Subramanian et al.

Fig. 6 (Color online) Stretching and Poincaré section for Model 2 (ω = 4, ε = 0.005 and b = 0.01). Symbols
are the same as in Fig. 5

Fig. 7 (Color online) Stretching and Poincaré section for Model 3 (ω = 2.5, ε = 0.01 and b = 0.09). Sym-
bols are the same as in Fig. 5

Fig. 8 (Color online) Stretching and Poincaré section for Model 4 (ω = 2.5, ε = 1 and b = 1). Symbols are
the same as in Fig. 5

Fig. 7, exhibits more uniform stretching than either Model 1 or 2. In Model 4 (ω = 2.5, ε = 1
and b = 1) the stretching is very uniform and significantly greater than the previous three
models as shown in Fig. 8. This is due to the strong three-dimensional component and time
dependence of the flow (higher values of ε and b). In the next section we look at the PDFs
associated with logS.



Statistics of Advective Stretching in Three-dimensional Incompressible 937

Table 2 The slope of the mean
stretching vs time plot (black line
in the PDF plots) and the mean
stretching rate is given for all the
models at time t = 200. Models 1
to 4 are the models for which we
show graphs and carry out a
detailed discussion. Models 5 to
13 were designed to analyze the
effect of time dependence and
three-dimensionality on
stretching distributions

Model number ω ε b Slope λ

Model 1 2.5 0.005 0.01 53.282 0.044

Model 2 4.0 0.005 0.01 42.986 0.053

Model 3 2.5 0.01 0.09 7.3693 0.313

Model 4 2.5 1.00 1.00 2.6875 0.860

Model 5 2.5 0.01 0.01 45.679 0.051

Model 6 2.5 0.01 0.03 21.841 0.110

Model 7 2.5 0.01 0.05 9.814 0.240

Model 8 2.5 0.01 0.07 8.059 0.290

Model 9 2.5 0.005 0.02 28.242 0.080

Model 10 2.5 0.015 0.02 31.873 0.071

Model 11 2.5 0.025 0.02 23.876 0.097

Model 12 2.5 0.035 0.02 21.854 0.106

Model 13 2.5 0.045 0.02 22.084 0.104

5 Probability Distributions

In this section we study the statistical distribution of values of logS for the 500 tracer par-
ticles at a specified time for our four models. In addition, we also present the results from
several other models in order to attempt to isolate the effects of time- and spatial-dependence
on the stretching behavior of the flow. If the values of logS satisfy a Gaussian distribution
then the values of s have a lognormal distribution. As noted by Arratia and Gollub [4] a
consensus does not exist on the asymptotic distribution of the stretching logS . Some in-
vestigations [17, 29] suggest that the asymptotic distribution of logS should be Gaussian,
however, the results of Arratia and Gollub [4] do not show this behavior. In this section we
present evidence that the asymptotic stretching distribution of logS in strongly chaotic flows
tends towards a Gaussian as the flow becomes more three-dimensional and time-dependent.
We also show that this shift towards a more Gaussian like distribution is accompanied by
a decrease in slope in the logS (where logS is the logarithm of the mean stretching) ver-
sus time (t ) plot. A significant amount of work has been done on the self similarity of the
stretching distributions [4, 16, 17, 25, 29] and we do not discuss this further.

The PDFs of logS for the 500 particles are shown in Figs. 9–10 and 12–13, for models
1 to 4 respectively. The PDFs are plotted at their corresponding times. The PDF at time
t = 50 is normalized to 50. PDFs at later times are plotted at their corresponding time and
normalized based on the ratio of the amplitude of their peak to that at time t = 50. The
lighter shades of green indicate increasing time. For all the models, the darkest shade of
green corresponds to t = 50 and the lightest shade corresponds to t = 200. The intermediate
values correspond to t = 100 and t = 150. The mean values of the stretching distribution at
various times are given as red dots. The straight line indicates the best fit line to the mean
stretching rate. The slope of this line is used to determine the value of λ given in Table 2.

From Figs. 9 and 10 we see that models 1 and 2 with ω = 2.5 and ω = 4 for ε = 0.005
and b = 0.01 show a strong peak in the lower end of the stretching spectrum. The value
of logS for the primary peak in ω = 2.5 is an order of magnitude higher than that for
ω = 4. From Fig. 11, we also see that both models show a weaker high end peak in the
stretching spectrum at later times. The peak for ω = 4.0 is broader compared to the peak for
ω = 2.5. We see that for both models with weak three-dimensionality and time dependence,
the stretching is very asymmetric. Also, from Table 2 we see that the mean stretching rate
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Fig. 9 (Color online) Model 1 ω = 2.5, ε = 0.005 and b = 0.01. The PDFs of the cumulative stretching
logS for the 500 tracer particles are given for various times. Lighter shades of green indicate further ahead in
time. Time t goes from t = 50 (darkest green) to t = 200 (lightest green). The intermediate values correspond
to t = 100, and t = 150. The PDF curves are plotted at their corresponding times indicated on the t axis. The
peak height of the PDF at time t = 50 is normalised to 50. Peak heights at other times are normalised based
on the ratio of the peak intensity at that time to that at time t = 50. The black line indicates the best fit line
to the mean stretching vs time plot. The slope of the line is 53.282 and the mean stretching given by λ =

1
slope × ln 10 = 0.044

Fig. 10 (Color online) Model 2
ω = 4.0, ε = 0.005 and b = 0.01.
Symbols and description are
similar to Fig. 9. The slope of the
line is 42.986 and the mean
stretching rate given by λ =

1
slope × ln 10 = 0.053

for Model 2 (λ = 0.053) is higher than the mean stretching rate for Model 1 (λ = 0.044), as
a consequence of the broad high end peak in Model 2.

Model 3 given in Fig. 12 with ω = 2.5, ε = 0.01, and b = 0.09 exhibits stronger and
more uniform stretching compared to Models 1 and 2. The mean stretching rate for Model 3
is λ = 0.313. The secondary high end peak observed in the stretching spectrum of Models 1
and 2 is absent in Model 3. From Table 2, we see that as ε = 0.01 is held constant and b

gradually increased from 0.01 to 0.09 (Model 3 and Models 5 to 8) the mean stretching rate
increases. This monotonic increase in mean stretching rate is not observed when b is held
constant at 0.02 and ε increased from 0.005 to 0.045 in Models 9 to 13. This indicates that b,
the time dependence amplitude, is a stronger control on mean stretching and hence mixing
for the flow considered in this paper.

Model 4 given in Fig. 13 with ω = 2.5, ε = 1.0, and b = 1.0 exhibits significantly
stronger stretching compared to models 1 to 3. The mean stretching rate for Model 4
is λ = 0.860. The enhanced stretching rate in Model 4 is a result of the strong three-
dimensionality and time dependence of the flow. To show that PDFs of logS are Gaussian
distributed, in Fig. 14 we show a plot of PDFs of logS at various times (t = 50, 100, 150,
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Fig. 11 (Color online) The PDFs of the cumulative stretching logS for the 500 tracer particles are given at
time t = 400 for two values of ω. The blue curve corresponds to Model 1 (ω = 2.5, ε = 0005 and b = 0.01)
and the red curve corresponds to Model 2 (ω = 4.0, ε = 0005 and b = 0.01). Secondary peaks are present in
both models and the secondary peak for ω = 4.0 is wider than the secondary peak for ω = 2.5

Fig. 12 (Color online) Model 3
ω = 2.5, ε = 0.01 and b = 0.09.
Symbols and description are
similar to Fig. 9. The slope of the
line is 7.3693 and the mean
stretching rate given by λ =

1
slope × ln 10 = 0.313

Fig. 13 (Color online) Model 4
ω = 2.5, ε = 1 and b = 1.
Symbols and description are
similar to Fig. 9. The slope of the
line is 2.6875 and the mean
stretching rate given by
λ = 1

slope × ln 10 = 0.860

and 200) along with a quantitative Gaussian fit shown as a red curve. As can be seen, there
is excellent agreement between the fit and the data. This lognormal distribution of logS is in
accordance with results previously obtained for asymptotic stretching distributions in some
2D and 3D flows [17, 29].

For Model 4 we have determined the means logS and standard deviations δ for the
Gaussian distributions illustrated in Fig. 14 as well at other times. At each time t we have
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Fig. 14 (Color online) For
Model 4 the PDFs of logS (green
circles) at different times (t = 50,
100, 150, 200) along with the
quantitative Gaussian fit to the
data (red curves) are given

Fig. 15 (Color online) Model 4
ω = 2.5, ε = 1 and b = 1. The
coefficients of variation of the
Gaussian distributions of logS at
various times t are given. Also
included is the best fit of (39) to
the data

determined the coefficient of variation

Cv = δ

logS
(36)

The dependence of the coefficient of variation on time is illustrated in Fig. 15. Clearly there
is a systematic decrease in Cv for increasing times t .

Muzzio et al. [25] have hypothesized that for chaotic flows the overall stretching experi-
enced by a tracer is a multiplicative process. Each process can be attributed to the exponen-
tial stretching of the tracer at a stagnation point. Thus the cumulative stretching experienced
by the tracer after a time t is a product of the stretching experienced during each individual
period. Therefore

S0,t = S0,1 × S1,2 × S2,3 · · · × St−1,t (37)

where Si−1,i indicates the stretching during the period t = i − 1 to t = i. Thus for long time
periods the multipliers Si−1,i act as random numbers. Thus

log S0,t = log S0,1 + log S1,2 + log S2,3 + · · · + log St−1,t (38)

and according to the central limit theorem, on long time scales, log S0,t has a Gaussian
distribution. Using this approach Muzzio et al. [25] argue that the mean log S and variance
V = σ 2 increase linearly with time so that from (36) we have

Cv = at−
1
2 (39)

As can be seen in Fig. 15 this result is in excellent agreement with our simulations.
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6 Discussion

We use the cellular flow model described by Solomon and Mezic [34] to study the stretching
properties of a three-dimensional, incompressible, unsteady, cellular flow. This particular
model has been well studied and allows for independent control of the amplitude of time
dependence and strength of the three-dimensional component of the flow. The independent
control of these parameters allows for a quantitative study on the effect of these parameters
on stretching and hence mixing ability in this model flow. We vary the non dimensional flow
parameters ε (three-dimensional component of velocity field), ω (oscillation frequency) and
b (amplitude of time dependence) to study the stretching characteristics in a suite of models.
We present graphs from four of these models. The four models of cellular flow (Table 1),
for which we present stretching and the corresponding PDF plots, are different from one
another. For ε = 0.005 and b = 0.01, the flow behaves like a vortical flow confined by solid
boundaries and the particle paths lie on toric surfaces. However, as the values of ε and b

are increased up to 1.0 to make the flow strongly three-dimensional and time-dependant, the
flow looses its vortical structure and the particle paths no longer lie on the toric surfaces.

Comparing our stretching results to that of Solomon and Mezic [34], we find that the
computation of cumulative stretching of passive tracers is a good proxy for studying mixing
of passive heterogeneities in fluid flows. In Model 1, we see that although the particle path is
space filling (Fig. 5(b)) and the mixing is chaotic, the stretching distribution is heterogeneous
(Fig. 5(a)). Regions of strong and weak stretching co-exist, creating a wide spectrum of
stretching values. This we call weak chaotic mixing. Model 2 exhibits inefficient mixing
due to the presence of regular elliptic islands in the flow (Fig. 6(b)), this is reflected as a
more heterogeneous stretching distribution compared to Model 1 (Fig. 6(a)). In Model 3
we find that the particle path is space filling (Fig. 7(b)) and the stretching distribution more
homogeneous compared to Models 1 and 2 (Fig. 7(a)). This model lies in the transitory
region between weak and strong chaotic mixing. In Model 4, we find that the particle path
is again space filling (Fig. 8(a)) and the stretching distribution very uniform compared to
Models 1, 2 and 3 (Fig. 8(b)). The uniformity of the stretching distributions in Models 1
and 4 can be evaluated by comparing the mean stretching rate, given by 7, experienced by a
arbitrary test tracer with that experienced by the ensemble of 500 tracers. For Model 1 the
mean stretching rate for a test tracer starting at (1.1, 0, 0) is found to be 0.104, while that
for the ensemble of 500 tracers is found to be 0.044. For Model 4 the mean stretching rate
for a test tracer starting at (1.1, 0, 0) is found to be 0.820, while that for the ensemble of 500
tracers is found to be 0.860. Although the test tracer at (1.1, 0, 0) was chosen arbitrarily, this
conclusion would be valid for a tracer starting at any point along (−0.5, 0, 0)× (1.5, 0, 0).
This clearly shows that the stretching distribution in Model 4 is more uniform than the
stretching distribution in Model 1. This homogeneity of stretching distribution along with
the space filling nature of the particle path, we suggest, is a characteristic of strong chaotic
mixing.

The PDFs of Models 1 and 2 exhibit two peaks (Fig. 11), a primary peak corresponding to
the low end of the stretching spectrum and a secondary peak corresponding to the high end
of the stretching spectrum. The primary peak in Model 1 is three orders of magnitude higher
than the primary peak in Model 2 and can be attributed to the bulk dynamics of the regions
in the flow experiencing weak chaotic mixing in this model. The secondary peak in Model
1 is stronger than that in Model 2 but is four orders of magnitude lower and narrower. This
indicates that a larger number of particles undergo moderately high stretching in Model
1 as opposed to fewer particles undergoing a range of high stretching values as in Model
2. In Model 2 the primary peak is representative of the stretching experienced by tracers
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Fig. 16 (Color online) The coefficient of variation of the stretching distribution for the ABC flow and
Model 1. (a) Coefficient of variation of the stretching distribution for the ABC flow is shown along with
a best fit curve of the form at−0.5. The data is shown for a initial grid of 212*212 tracers starting in the x = 0
plane. The values of A, B , C are chosen as

√
3,

√
2,1 respectively. As can be seen the coefficient of variation

decreases significantly slower than the predicted t−0.5. This is because the ABC flow does not exhibit global
chaos due to the presence of regular KAM tori. (b) The coefficient of variation of the stretching distribution
for Model 1 is shown along with the best fit curve of the form at−0.5. After a initial decrease, the coefficient
of variation increases again showing that although the mean decreases linearly in time (Fig. 9), the variance
of the distribution does not

starting in the excluded, white, regions in the Poincaré map (Fig. 6(b)) and the secondary
peak is indicative of the bulk dynamics of the particles starting in the regular elliptic islands.
Both Models 3 and 4 do not show secondary peaks. From Figs. 9–13 we also see that the
stretching peaks in Models 1 and 2 remain almost stationary in time, while the peaks in
Models 3 and 4 migrate towards higher stretching values. This suggests that Model 1 will not
obey the random multiplicative process theory for chaotic mixing put forward by Muzzio et
al. [25], while in Models 3 and 4 mixing proceeds through a random multiplicative process.
This prediction is amply born out in Fig. 16. This difference in the time evolution of the
coefficient of variation of stretching values, we suggest, is another difference between weak
and strong chaotic mixing.

Based on other simulations, Models 5–13, we find that, for the flow considered in this
study, the transition from weak chaotic mixing to strong chaotic mixing is primarily a result
of the time dependence of the flow. This is indicated by the increase in the mean stretching
rate, λ, as b is increased (i.e., ε is held constant; Models 3, 5 to 8). A similar increase is
not observed when increasing ε (i.e., holding b constant; Models 9 to 13) (Table 2). This
transition from weak to strong chaotic mixing is accompanied by a change in the topology of
the particle paths (Fig. 3). Since even steady flows like the ABC flow [10], a steady solution
to the Euler equations, or the STF flow [5], a solution to the Stokes equation, can produce
chaotic particle paths it is incorrect to associate chaotic particle paths, and subsequently
strong chaotic mixing, with time dependence. As described above, for the vortical flow
studied in this paper, this transition from weak to strong chaotic mixing is facilitated by
time dependence of the flow, however, this will not be true in general.

Based on our study, we suggest that only those flows which exhibit both global chaos and
uniform Lagrangian dynamics (uniform stretching) throughout the flow domain will exhibit
strong chaotic mixing. We have already shown that these two properties are satisfied for
Model 4, however, to strengthen our conclusion, we present results from a flow that is not
globally chaotic, the ABC flow [10], and from a flow that is globally chaotic but does not
exhibit uniform Lagrangian dynamics, Model 1.

From Fig. 16 we see that our hypothesis is amply justified, both Model 1 and the ABC

flow do not show a power law decrease in the coefficient of variation of the stretching dis-
tribution, similar to Model 4. While for the ABC flow this is due to the lack of global chaos
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(regular KAM tori) [10], for Model 1 it is due to the difference in the time required by
tracers starting at different points to be space filling (different time scales associated with
the Lagrangian dynamics). Suggesting a general route to uniform global chaos based on
the current study is not possible. For the flow considered in this paper time dependence is
the governing mechanism, however, as mentioned above, this will not be true in general.
Although a connection between chaotic advection and chaotic mixing has been established
before, a transition from weak to strong chaotic mixing due to the time scales associated
Lagrangian dynamics has not been reported before in numerical models of fluid flow.

The cellular flow model developed by Solomon and Mezic [34] captures the important
features of vortical flows bounded by rigid boundaries. Since such flows are common in
nature, we believe the stretching properties observed here will be widely applicable. In this
paper we extend the scope of this model in order to study the effects of moderate and strong
three-dimensionality and time dependence on stretching distributions and hence mixing. The
flows do not emulate vortical flows in the strongly three-dimensional and time-dependent
limit. However, in this limit we believe this study is relevant to three-dimensional, unsteady,
and incompressible flows encountered in strongly chaotic systems. Since the spatiotemporal
dependence of the velocity field and the structure of the flow seem to be important factors
in determining the effectiveness of mixing, we believe this study contributes to the under-
standing of mixing in many commonly studied model flows.
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