828 research outputs found

    Logarithmic corrections in the free energy of monomer-dimer model on plane lattices with free boundaries

    Full text link
    Using exact computations we study the classical hard-core monomer-dimer models on m x n plane lattice strips with free boundaries. For an arbitrary number v of monomers (or vacancies), we found a logarithmic correction term in the finite-size correction of the free energy. The coefficient of the logarithmic correction term depends on the number of monomers present (v) and the parity of the width n of the lattice strip: the coefficient equals to v when n is odd, and v/2 when n is even. The results are generalizations of the previous results for a single monomer in an otherwise fully packed lattice of dimers.Comment: 4 pages, 2 figure

    Simultaneous Assembly Planning and Assembly System Design Using Multi-objective Genetic Algorithms

    Full text link
    This paper aims to demonstrate the application of multi-objective evolutionary optimization, namely an adaptation of NSGA-II, to simultaneously optimize the assembly sequence plan as well as selection of the type and number of assembly stations for a production shop that produces three different models of wind propelled ventilators. The decision variables, which are the assembly sequences of each product and the machine selection at each assembly station, are encoded in a manner that allows efficient implementation of a repair operator to maintain the feasibility of the offspring. Test runs are conducted for the sample assembly system using a crossover operator tailored for the proposed encoding and some conventional crossover schemes. The results show overall good performance for all schemes with the best performance achieved by the tailored crossover, which illustrates the applicability of multi-objective GAÕs. The presented framework proposed is generic to be applicable to other products and assembly systems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87283/4/Saitou97.pd

    Frameworks for logically classifying polynomial-time optimisation problems.

    Get PDF
    We show that a logical framework, based around a fragment of existential second-order logic formerly proposed by others so as to capture the class of polynomially-bounded P-optimisation problems, cannot hope to do so, under the assumption that P ≠ NP. We do this by exhibiting polynomially-bounded maximisation and minimisation problems that can be expressed in the framework but whose decision versions are NP-complete. We propose an alternative logical framework, based around inflationary fixed-point logic, and show that we can capture the above classes of optimisation problems. We use the inductive depth of an inflationary fixed-point as a means to describe the objective functions of the instances of our optimisation problems

    Sudden emergence of q-regular subgraphs in random graphs

    Full text link
    We investigate the computationally hard problem whether a random graph of finite average vertex degree has an extensively large qq-regular subgraph, i.e., a subgraph with all vertices having degree equal to qq. We reformulate this problem as a constraint-satisfaction problem, and solve it using the cavity method of statistical physics at zero temperature. For q=3q=3, we find that the first large qq-regular subgraphs appear discontinuously at an average vertex degree c_\reg{3} \simeq 3.3546 and contain immediately about 24% of all vertices in the graph. This transition is extremely close to (but different from) the well-known 3-core percolation point c_\cor{3} \simeq 3.3509. For q>3q>3, the qq-regular subgraph percolation threshold is found to coincide with that of the qq-core.Comment: 7 pages, 5 figure

    Optimization by Quantum Annealing: Lessons from hard 3-SAT cases

    Full text link
    The Path Integral Monte Carlo simulated Quantum Annealing algorithm is applied to the optimization of a large hard instance of the Random 3-SAT Problem (N=10000). The dynamical behavior of the quantum and the classical annealing are compared, showing important qualitative differences in the way of exploring the complex energy landscape of the combinatorial optimization problem. At variance with the results obtained for the Ising spin glass and for the Traveling Salesman Problem, in the present case the linear-schedule Quantum Annealing performance is definitely worse than Classical Annealing. Nevertheless, a quantum cooling protocol based on field-cycling and able to outperform standard classical simulated annealing over short time scales is introduced.Comment: 10 pages, 6 figures, submitted to PR

    Complexity transitions in global algorithms for sparse linear systems over finite fields

    Full text link
    We study the computational complexity of a very basic problem, namely that of finding solutions to a very large set of random linear equations in a finite Galois Field modulo q. Using tools from statistical mechanics we are able to identify phase transitions in the structure of the solution space and to connect them to changes in performance of a global algorithm, namely Gaussian elimination. Crossing phase boundaries produces a dramatic increase in memory and CPU requirements necessary to the algorithms. In turn, this causes the saturation of the upper bounds for the running time. We illustrate the results on the specific problem of integer factorization, which is of central interest for deciphering messages encrypted with the RSA cryptosystem.Comment: 23 pages, 8 figure

    Statistical Mechanics of the Quantum K-Satisfiability problem

    Full text link
    We study the quantum version of the random KK-Satisfiability problem in the presence of the external magnetic field Γ\Gamma applied in the transverse direction. We derive the replica-symmetric free energy functional within static approximation and the saddle-point equation for the order parameter: the distribution P[h(m)]P[h(m)] of functions of magnetizations. The order parameter is interpreted as the histogram of probability distributions of individual magnetizations. In the limit of zero temperature and small transverse fields, to leading order in Γ\Gamma magnetizations m0m \approx 0 become relevant in addition to purely classical values of m±1m \approx \pm 1. Self-consistency equations for the order parameter are solved numerically using Quasi Monte Carlo method for K=3. It is shown that for an arbitrarily small Γ\Gamma quantum fluctuations destroy the phase transition present in the classical limit Γ=0\Gamma=0, replacing it with a smooth crossover transition. The implications of this result with respect to the expected performance of quantum optimization algorithms via adiabatic evolution are discussed. The replica-symmetric solution of the classical random KK-Satisfiability problem is briefly revisited. It is shown that the phase transition at T=0 predicted by the replica-symmetric theory is of continuous type with atypical critical exponents.Comment: 35 pages, 23 figures; changed abstract, improved discussion in the introduction, added references, corrected typo

    An algorithm for counting circuits: application to real-world and random graphs

    Full text link
    We introduce an algorithm which estimates the number of circuits in a graph as a function of their length. This approach provides analytical results for the typical entropy of circuits in sparse random graphs. When applied to real-world networks, it allows to estimate exponentially large numbers of circuits in polynomial time. We illustrate the method by studying a graph of the Internet structure.Comment: 7 pages, 3 figures, minor corrections, accepted versio

    Stochastic Budget Optimization in Internet Advertising

    Full text link
    Internet advertising is a sophisticated game in which the many advertisers "play" to optimize their return on investment. There are many "targets" for the advertisements, and each "target" has a collection of games with a potentially different set of players involved. In this paper, we study the problem of how advertisers allocate their budget across these "targets". In particular, we focus on formulating their best response strategy as an optimization problem. Advertisers have a set of keywords ("targets") and some stochastic information about the future, namely a probability distribution over scenarios of cost vs click combinations. This summarizes the potential states of the world assuming that the strategies of other players are fixed. Then, the best response can be abstracted as stochastic budget optimization problems to figure out how to spread a given budget across these keywords to maximize the expected number of clicks. We present the first known non-trivial poly-logarithmic approximation for these problems as well as the first known hardness results of getting better than logarithmic approximation ratios in the various parameters involved. We also identify several special cases of these problems of practical interest, such as with fixed number of scenarios or with polynomial-sized parameters related to cost, which are solvable either in polynomial time or with improved approximation ratios. Stochastic budget optimization with scenarios has sophisticated technical structure. Our approximation and hardness results come from relating these problems to a special type of (0/1, bipartite) quadratic programs inherent in them. Our research answers some open problems raised by the authors in (Stochastic Models for Budget Optimization in Search-Based Advertising, Algorithmica, 58 (4), 1022-1044, 2010).Comment: FINAL versio

    Phase transition for cutting-plane approach to vertex-cover problem

    Full text link
    We study the vertex-cover problem which is an NP-hard optimization problem and a prototypical model exhibiting phase transitions on random graphs, e.g., Erdoes-Renyi (ER) random graphs. These phase transitions coincide with changes of the solution space structure, e.g, for the ER ensemble at connectivity c=e=2.7183 from replica symmetric to replica-symmetry broken. For the vertex-cover problem, also the typical complexity of exact branch-and-bound algorithms, which proceed by exploring the landscape of feasible configurations, change close to this phase transition from "easy" to "hard". In this work, we consider an algorithm which has a completely different strategy: The problem is mapped onto a linear programming problem augmented by a cutting-plane approach, hence the algorithm operates in a space OUTSIDE the space of feasible configurations until the final step, where a solution is found. Here we show that this type of algorithm also exhibits an "easy-hard" transition around c=e, which strongly indicates that the typical hardness of a problem is fundamental to the problem and not due to a specific representation of the problem.Comment: 4 pages, 3 figure
    corecore