25 research outputs found

    Impact of Satellite Observations on Forecasting Sudden Stratospheric Warmings

    Get PDF
    The observational impacts of satellite data assimilation on extended‐range forecasts of sudden stratospheric warmings (SSWs) are investigated by conducting ensemble forecast experiments. We use two Japanese novel reanalysis products: the Japanese 55‐year reanalysis (JRA‐55) and its subset that assimilates conventional observations only (JRA‐55C). A comparative examination on the reproducibility for SSWs between the two ensemble forecasts reveals that the impact of satellite observations is significant for forecasts starting 5 days before the SSW onset, with 20% less accuracy in the JRA‐55C forecasts. Moreover, some of forecasts of vortex‐splitting SSWs show a sudden appearance of deep difference, which lasts over a few months in the lower stratosphere and significantly affects the surface climate. These results highlight an important role of mesospheric and upper stratospheric circulations on the onset and development of SSWs

    Stratospheric tropical warming event and its impact on the polar and tropical troposphere

    Get PDF
    Stratosphere–troposphere coupling is investigated in relation to middle atmospheric subtropical jet (MASTJ) variations in boreal winter. An exceptional strengthening of the MASTJ occurred in association with a sudden equatorward shift of the stratospheric polar night jet (PNJ) in early December 2011. This abrupt transformation of the MASTJ and PNJ had no apparent relation to the upward propagation of planetary waves from the troposphere. The impact of this stratospheric event penetrated into the troposphere in two regions: in the northern polar region and the tropics. Due to the strong MASTJ, planetary waves at higher latitudes were deflected and trapped in the northern polar region. Trapping of the planetary waves resulted in amplification of zonal wave number 1 component, which appeared in the troposphere as the development of a trough over the Atlantic sector and a ridge over the Eurasian sector. A strong MASTJ also suppressed the equatorward propagation of planetary waves, which resulted in weaker tropical stratospheric upwelling and produced anomalous warming in the tropical stratosphere. In the tropical tropopause layer (TTL), however, sublimation of ice clouds kept the temperature change minor. In the troposphere, an abrupt termination of a Madden–Julian Oscillation (MJO) event occurred following the static stability increase in the TTL. This termination suggests that the stratospheric event affected the convective episode in the troposphere
    corecore