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Advances in the field of seasonal forecasting have brought widespread socio-economic benefits. 18 

However, seasonal forecast skill in the extratropics is relatively modest1, which has prompted the 19 

seasonal forecasting community to search for additional sources of predictability2,3. For over a 20 

decade it has been suggested that the stratosphere can act as a source of enhanced seasonal 21 

predictability, as long-lived circulation anomalies in the lower stratosphere following 22 

Stratospheric Sudden Warmings are associated with same-signed circulation anomalies in the 23 

troposphere for up to two months4,5. Here we show that such enhanced predictability can be 24 

realized in a dynamical seasonal forecast system, thus opening the door to prediction of a 25 

comprehensive suite of parameters of socio-economic relevance. We employ a dynamical 26 

forecast system with a good representation of the stratosphere to perform ensemble model 27 

forecasts initialized at the onset date of Stratospheric Sudden Warmings. Our model forecasts 28 

faithfully reproduce the observed mean tropospheric response in the following months, with 29 

enhanced forecast skill of atmospheric circulation patterns, surface temperature over Northern 30 

Russia and Eastern Canada, and North Atlantic precipitation. Our results imply that seasonal 31 

forecast systems are likely to produce significantly higher forecast skill for certain regions when 32 

initialized during Stratospheric Sudden Warmings. 33 

 34 

 35 

Skillful seasonal forecasts rely on the predictability of slowly-varying components of the climate 36 

system, such as sea surface temperature (SST), sea ice, snow, and soil moisture. Most of the skill 37 

that is currently obtained by seasonal forecast systems stems from the predictability of El Niño 38 

Southern Oscillation (ENSO) and its remote influences1. In general, ENSO’s influence declines 39 
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with increasing distance from the tropical Pacific Ocean, resulting in relatively smaller forecast 40 

skill for the extratropics, especially over Northern Eurasia1,2. However, two recent reports2,3 have 41 

suggested that the maximum seasonal forecast skill has not been achieved, and have identified 42 

the stratosphere as an untapped source of enhanced seasonal predictability. This is based on the 43 

observation that rapid breakdowns of the westerly flow (or polar vortex) in the polar winter 44 

stratosphere (known as Stratospheric Sudden Warmings or SSWs) tend to be followed by a 45 

tropospheric circulation pattern that is often described as the negative phase of the Northern 46 

Annular Mode (NAM)4, with a corresponding signature in surface temperature that is 47 

complementary to that of ENSO (i.e. strongest over the Atlantic sector and Northern Eurasia, 48 

where the ENSO impact is modest)5. However, SSWs are highly nonlinear events that are only 49 

predictable a week or two in advance6,7. Consequently, the enhanced seasonal predictability 50 

coming from the stratosphere is likely to be conditional (i.e., only after a SSW has occurred).  51 

 52 

Previous studies of enhanced seasonal predictability associated with SSWs are mainly based on 53 

simple statistical models8-11. Seasonal forecast systems based on dynamical models are able to 54 

capture the average tropospheric state following SSWs to some extent12, but it is not evident that 55 

this is associated with a detectable increase in forecast skill of surface weather13. Here we 56 

demonstrate that a dynamical forecast system initialized at the time of a SSW is able to predict 57 

the mean tropospheric circulation response in the following months. We also show that the 58 

forecast skill of socio-economically relevant variables such as surface temperature and 59 

precipitation is significantly enhanced relative to the forecast skill in a set of unconditional 60 

forecasts (i.e. control forecasts that are not explicitly initialized during SSWs). 61 
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 62 

The dynamical forecast system in this study employs the Canadian Middle Atmosphere Model 63 

(CMAM)14. Retrospective forecasts (also known as hindcasts) are initialized at 20 SSW dates 64 

between 1970 and 2009 (hereafter referred to as the SSW forecasts), each consisting of 10 65 

ensemble members. In all model forecasts, SST anomalies that occur at initialization time are 66 

thereafter relaxed to climatology as described in the Methods section. This allows us to exclude 67 

predictability that may arise from SSTs (e.g., related to the ENSO phenomenon), thus isolating 68 

predictability that stems from atmospheric and associated land initializations. We focus on the 69 

ensemble mean forecast averaged over the 16-60 days after the SSWs. Forecast anomalies are 70 

defined as differences relative to the climatology of the unforced (freely running) model (see the 71 

Methods section).  72 

 73 

The model prediction of the anomalous tropospheric state following SSWs agrees very well with 74 

observations (Fig. 1; see also Supplementary Fig. S1). Figs. 1a and 1c (contours) show that 75 

averaged over all 20 SSW cases, the observed Sea Level Pressure (SLP) pattern is characterized 76 

by a dipole with anomalously high SLP at high latitudes and anomalously low SLP at mid-77 

latitudes. This pattern is often described as a negative NAM pattern. It is well reproduced by the 78 

model (Figs. 1b and 1d), except that the centre of anomalously low SLP in the North Atlantic is 79 

shifted east relative to that in the observations. The negative NAM pattern is associated with a 80 

near-surface easterly wind anomaly at NH mid-latitudes (not shown), which results in increased 81 

(decreased) advection of relatively warm ocean air to Eastern Canada (Northern Russia)15.  The 82 

resulting warm anomaly over Eastern Canada and cold anomaly over Northern Russia (Fig. 1a) 83 
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is again well captured by the model (Fig. 1b).  The negative NAM pattern is also consistent with 84 

an equatorward shift of the storm track (not shown), which is associated with decreased 85 

precipitation (PCP) over the high-latitude Atlantic, and increased PCP over the mid-latitude 86 

Atlantic (Fig. 1c). This feature is again well reproduced by the model (Fig. 1d), except that, 87 

consistent with the SLP, the centre of anomalously high PCP in the mid-latitude North Atlantic is 88 

shifted east relative to that in the observations.     89 

 90 

The implications for forecast skill can be understood by considering Fig. 2a. It shows a scatter 91 

plot of the observed versus forecast NAM index at 1000 hPa, where each point represents one 92 

(ensemble mean) model forecast initialized at a particular SSW date. Most points are located in 93 

the lower left quadrant, reflecting the fact that on average both the observed and modeled surface 94 

NAM following the SSWs is negative. The average horizontal location (represented by the 95 

vertical dashed line) is the mean observed value (-0.44). The horizontal error bar shows that the 96 

observed mean surface NAM response is statistically significant at the 95% confidence level. 97 

The average modeled surface NAM, which is the average vertical location of the points, is 98 

somewhat larger (-0.74) and also statistically significant. The correlation between observed and 99 

modeled surface NAM (hereafter referred to as the Correlation Skill Score (CSS) or simply 100 

‘forecast skill’) is substantial (r=0.55) and statistically significant at the 99% confidence level 101 

(see also Fig. 4a), which is a reflection of the tendency of the points in the scatter plot to be 102 

shifted towards the lower left quadrant. Thus, we find that our model has a significant skill in 103 

forecasting the surface circulation for a lead time of 16-60 days.  104 

 105 
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Some of the skill in the SSW forecasts may, in principle, also stem from predictability of slowly 106 

varying boundary conditions such as soil moisture (as noted above, the model forecasts are 107 

designed to exclude SST effects on predictability). To quantify such skill, we performed a 108 

control set of forecasts initialized at the same calendar dates as the SSWs, but in the year 109 

preceding and the year following the SSWs. The results are plotted in Fig. 2b. We find a similar 110 

spread in the observed and modeled surface NAM index as in the SSW forecasts, but instead of 111 

being shifted towards a particular quadrant, the cloud of points is centered near the origin. The 112 

near-zero (-0.01) CSS for the surface NAM demonstrates that the unconditional control forecasts 113 

do not contain any forecast skill for the surface circulation for a lead time of 16-60 days, 114 

demonstrating that the skill in the SSW forecasts does come from the SSWs themselves. Note 115 

that the similar spread in the cloud of points in Figures 2a and 2b suggests that the inherent 116 

predictability of the surface NAM is not enhanced after SSWs, but instead that the increased 117 

correlation skill score in the SSW forecasts is largely due to the shift in the mean NAM towards 118 

negative values.  119 

 120 

The vertical profile of the mean NAM index following the SSWs is well captured by the model 121 

forecasts (Fig. 3a). The model slightly overestimates the mean NAM response near the surface, 122 

but correctly captures the vertical structure which maximizes in the lower stratosphere and 123 

exhibits a minimum in the middle troposphere. The corresponding forecast skill is shown in Fig. 124 

3b. Consistent with Fig. 2, it shows that near the surface the forecast skill is substantial and 125 

significant for the SSW forecasts, and near-zero and not significant for the control forecasts. 126 

Except for the mid to upper troposphere, forecast skill of the NAM following SSWs is 127 
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substantial, statistically significant, and significantly larger than in forecasts that are not 128 

constrained to be initialized during SSWs.  129 

 130 

The influence of SSWs on forecast skill for the NAM index and for Northern Hemisphere 131 

surface variables is summarized in Fig. 4. The statistical significance of the difference between 132 

the CSS in the SSW and control forecasts is labeled by p-values in this figure, which represent 133 

the confidence level at which enhanced forecast skill can be associated with SSWs and which are 134 

determined by bootstrapping. This level exceeds 99% (p<0.01) for the NAM at 100 and 1000 135 

hPa (Fig. 4a), and is 98% for the North Atlantic Oscillation (NAO) (which is the local Atlantic 136 

manifestation of the surface NAM and is defined here as the SLP difference between Iceland and 137 

the Azores) (Fig. 4b). For SLP, Surface Temperature (ST) and PCP, forecast skill averaged over 138 

20-90°N (left bars in Figs. 4b-d) is statistically significant in the SSW forecasts, and enhanced 139 

relative to that in the control forecasts. However, this enhancement is only statistically 140 

significant for SLP (p=0.04). Focusing on localized regions, significant skill enhancement can be 141 

detected for ST in Northern Russia and Eastern Canada (Fig. 4c) and for the PCP gradient over 142 

the Northern Atlantic (Fig. 4d).  143 

 144 

For more than a decade it has been suggested that the stratosphere can act as a source of seasonal 145 

predictability. The results in this paper confirm that such predictability can be realized in 146 

dynamical forecast systems. A requirement for the predictability to be realized is a model that 147 

realistically simulates the tropospheric response to SSWs. Even though current seasonal forecast 148 
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systems (which generally have a poorly represented stratosphere) capture this response with 149 

some credibility12, it has been suggested that the response is more realistic in models with a well-150 

represented stratosphere16 such as the model employed here. Also, as SSWs themselves are 151 

better predicted with a longer lead time in such models7 it may be possible to elevate seasonal 152 

forecast skill by raising the model lid and increasing vertical resolution in the stratosphere2,17.   153 

 154 

In assessing the practical implications of these results it must be noted that the enhanced 155 

predictability is highly conditional and contingent upon the occurrence of SSWs, which occur on 156 

average in six out of ten winters. Although the seasonal predictability associated with ENSO is 157 

also conditional, there are two important differences: 1) SSWs are inherently less predictable 158 

than ENSO giving a shorter lead time for the opportunity, and 2) the window of opportunity is 159 

comparatively limited as the SSW influence on the troposphere only lasts for about half to two-160 

thirds of a season. Therefore the potential enhancement of forecast skill associated with SSWs is 161 

likely to be very limited in standard seasonal forecasts which are generally issued once a month. 162 

In an attempt to exploit this source of predictability stemming from the stratosphere, seasonal 163 

forecast centers could issue special forecasts once a SSW has been identified in observations. 164 

This would require additional computational resources as forecast simulations initialized at non-165 

standard dates would have to be performed. The results presented here suggest that such 166 

additional computational effort would be well justified, as the special forecasts are likely to 167 

feature enhanced forecast skill with potentially widespread socio-economic benefits.  168 

  169 
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Methods 170 

Observational dataset and model forecasts 171 

The 1970-1988 data from ERA-40 (ref. 18) and the 1989-2009 data from ERA-Interim19 are 172 

merged to provide an observational dataset that is used to initialize and verify the model.  To 173 

identify Stratospheric Sudden Warmings (SSWs), we apply a criterion based on the Northern 174 

Annular Mode (NAM) index instead of the standard WMO criterion which is based on the zonal-175 

mean zonal wind at 10 hPa and 60°N, as the NAM index has been shown to better gauge 176 

stratosphere-troposphere coupling than zonal-mean zonal wind20.  A SSW is defined to occur 177 

when the NAM index calculated from year-round daily zonal-mean geopotential height 178 

following ref. 20 first drops below -2.5 at 30 hPa. For winters with multiple SSWs, we only 179 

consider the warming with the largest amplitude. Following this procedure 20 warming cases are 180 

found between November 1970 and March 2009. 181 

 182 

The dynamical seasonal forecast system is based on the Canadian Middle Atmosphere Model 183 

(CMAM)14, which has 71 vertical levels from the surface up to about 100 km at T63 horizontal 184 

resolution. To assess the forecast skill following SSWs we performed 10-member ensemble 185 

model forecasts initialized at the 20 SSW dates identified from the observations. The 10 initial 186 

states for each SSW are obtained as follows.  Ten model runs are started from 10 slightly 187 

different atmospheric states on January 1, 1970. In these ‘assimilation’ runs, the spatial scales of 188 

the vorticity, divergence and temperature that can be represented by spectral truncation T21 are 189 

relaxed towards the time-evolving reanalyses between 1970 and 2009. The relaxation time is 24 190 

hours, which is selected such that the simulated state closely follows the observed one, and the 191 
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resulting RMS spread between ensemble members roughly matches the RMS spread between the 192 

different reanalysis data sets.  The initial atmospheric and land conditions used for the model 193 

forecasts at the onset date of the observed SSWs are obtained from these 10 assimilation runs. 194 

The initial sea surface temperature (SST) and sea-ice fields are taken from the HadISST 195 

dataset21. Instead of persisting the SST anomaly that occurs at initialization time for the duration 196 

of the model forecast, which is common for operational two-tier seasonal forecasts, we linearly 197 

relax the SST anomaly towards climatology in the first 2 weeks of the forecasts. We apply this 198 

procedure to exclude predictability that may arise from SSTs, thus isolating the predictability 199 

that stems directly from atmospheric perturbations (i.e., SSWs) alone. 200 

 201 

To assess if the skill for the forecasts initialized during SSWs is significantly larger than a 202 

typical, unconditional forecast, we performed a control set of forecasts initialized at the same 203 

calendar dates as the SSWs, but in the year preceding and the year following the SSWs. For the 204 

warming that occurred in the 1970-1971 (2008-2009) winter, the control forecast in only the 205 

following (previous) winter is performed, as no initial conditions were available for the 1969-206 

1970 (2009-2010) winters. This results in 38 control forecasts, which are compared to the 20 207 

SSW forecasts. 208 

 209 

In order to calculate anomalies of meteorological fields in the forecast runs, a reference model 210 

climatology must be defined.  For this purpose, we performed 10-member ensemble model 211 

simulations for the period 1970-2009 with prescribed HadISST SST and sea-ice fields, referred 212 

to as AMIP runs. Anomalies of sea level pressure (SLP), Surface Temperature (ST) and 213 

Precipitation (PCP) in the model forecasts are calculated relative to the corresponding ensemble 214 
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mean climatologies in these AMIP runs. The daily NAM index in the model forecasts is obtained 215 

by projecting zonal mean geopotential height anomalies relative to the corresponding AMIP 216 

climatology onto the observed NAM pattern. We note that during the first ~15 days of the 217 

forecasts the model drifts from observations to the mean behaviour of the AMIP runs (see 218 

Supplementary Material). Therefore our analysis focusses on days 16-60 after the SSWs. 219 

 220 

Forecast skill quantification 221 

The forecast skill is quantified by the Correlation Skill Score (CSS) defined as follows. Let Fm 222 

represent the ensemble mean forecast of a variable (e.g., ST) averaged over a certain period (in 223 

this paper, days 16-60) after the forecast initialization date indexed by m = 1,…, M, and Xm 224 

represent the corresponding observed value. M = 20(38) for the SSW (control) forecasts. 225 

The CSS is given by: 226   ,  , 227 

where 228 

,    ∑   , 229 

    ∑  , 230 

    ∑  . 231 

For SLP, ST, and PCP,  is the observed anomaly relative to the 1970-2009 observed 232 

climatology, and  is the model forecast anomaly relative to the climatology in the AMIP runs.  233 

For the NAM index,  and  represent the values of the observed and forecast NAM index 234 

itself since it is already calculated from anomalies of geopotential height. Statistical significance 235 



12 

 

of the CSS is determined in a bootstrapping procedure by random sampling with replacement of 236 

M pairs of  and . 237 

 238 

References 239 

1. Oldenborgh, G.J. van, Balmaseda, M., Ferranti, L., Stockdale, T.N. & Anderson, D.L.T. 240 

Evaluation of atmospheric fields from the ECMWF seasonal forecasts over a 15-year 241 

period. J. Clim. 18, 3250-3269 (2005). 242 

2. Kirtman, B. & Pirani, A. WCRP position paper on seasonal prediction. WCRP Informal 243 

Report 3, (2008).  244 

3. NRC, Assessment of Intraseasonal to Interannual Climate Prediction and Predictability 245 

(National Academies Press, 2010). 246 

4. Baldwin, M.P. & Dunkerton, T.J. Stratospheric harbingers of anomalous weather 247 

regimes. Science 294, 581-4 (2001). 248 

5. Thompson, D.W.J., Baldwin, M.P. & Wallace, J.M. Stratospheric Connection to 249 

Northern Hemisphere Wintertime Weather: Implications for Prediction. J. Clim. 15, 250 

1421-1428 (2002). 251 

6. Gerber, E.P., Orbe, C. & Polvani, L.M. Stratospheric influence on the tropospheric 252 

circulation revealed by idealized ensemble forecasts. Geophys. Res. Lett. 36, L24801 253 

(2009). 254 



13 

 

7. Marshall, A.G. & Scaife, A.A. Improved predictability of stratospheric sudden warming 255 

events in an atmospheric general circulation model with enhanced stratospheric 256 

resolution. J. Geophys. Res. 115, D16114 (2010). 257 

8. Baldwin, M.P. et al. Stratospheric memory and skill of extended-range weather forecasts. 258 

Science  301, 636-40 (2003). 259 

9. Charlton, A.J., O’Neill, A., Stephenson, D.B., Lahoz, W.A. & Baldwin, M.P. Can 260 

knowledge of the state of the stratosphere be used to improve statistical forecasts of the 261 

troposphere? Q. J. R. Meteorol. Soc. 129, 3205-3224 (2003). 262 

10. Christiansen, B. Downward propagation and statistical forecast of the near-surface 263 

weather. J. Geophys. Res. 110, D14104 (2005). 264 

11. Siegmund, P. Stratospheric polar cap mean height and temperature as extended-range 265 

weather predictors. Mon. Weather Rev. 133, 2436-2448 (2005). 266 

12. Maycock, A.C., Keeley, S.P.E., Charlton-Perez, A.J. & Doblas-Reyes, F.J. Stratospheric 267 

circulation in seasonal forecasting models: implications for seasonal prediction. Clim. 268 

Dyn. 36, 309-321 (2011).  269 

13. Mukougawa, H., Hirooka, T. & Kuroda, Y. Influence of stratospheric circulation on the 270 

predictability of the tropospheric Northern Annular Mode. Geophys. Res. Lett. 36, 271 

L08814 (2009). 272 

14. Scinocca, J.F., McFarlane, N. A., Lazare, M., Li, J. & Plummer, D. Technical Note: The 273 

CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. 274 

Chem. Phys. 8, 7055-7074 (2008). 275 



14 

 

15. Thompson, D.W. & Wallace, J.M. Regional climate impacts of the Northern Hemisphere 276 

annular mode. Science  293, 85-9 (2001). 277 

16. Hardiman, S.C., Butchart, N., Hinton, T.J., Osprey, S.M. & Gray, L.J. The effect of a 278 

well resolved stratosphere on surface climate: Differences between CMIP5 simulations 279 

with high and low top versions of the Met Office climate model. J. Clim., 25, 7083–7099 280 

(2012).  281 

17. Roff, G., Thompson, D.W.J. & Hendon, H. Does increasing model stratospheric 282 

resolution improve extended-range forecast skill? Geophys. Res. Lett. 38, L05809 (2011). 283 

18. Uppala, S.M. et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 131, 2961-3012 284 

(2005). 285 

19. Dee, D.P. et al. The ERA-Interim reanalysis: configuration and performance of the data 286 

assimilation system. Q. J. R. Meteorol. Soc. 137, 553-597 (2011). 287 

20. Baldwin, M.P. & Thompson, D.W.J. A critical comparison of stratosphere–troposphere 288 

coupling indices. Q. J. R. Meteorol. Soc. 135, 1661–1672 (2009). 289 

21.  Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine 290 

air temperature since the late nineteenth century. J. Geophys. Res. 108, (D14), 4407 291 

(2003). 292 

 293 

 294 

  295 



15 

 

Figure 1 | Surface climate response to SSWs. a-d, Mean anomaly averaged over days 16-60 296 

after all SSWs of sea level pressure (contours), surface temperature (shading in a and b) and 297 

precipitation (shading in c and d) for the observations (a and c) and the model forecasts (b and 298 

d). Contour interval for sea level pressure is 1 hPa (…, -1.5, -0.5, 0.5,…), and solid (dashed) 299 

contours denote positive (negative) values. Black dots represent statistical significance at the 300 

90% confidence level (determined by bootstrapping) of the shaded quantities. Observed 301 

(modeled) SLP anomalies are generally significant at the 90% level where the mean anomaly 302 

exceeds ~1.5 (0.5) hPa. 303 

 304 

Figure 2 | Observed versus forecast 1000 hPa NAM index. a-b, Scatter plot of the observed 305 

versus forecast NAM index at 1000 hPa averaged over 16-60 days following the 20 SSWs (a) 306 

and the 38 control dates (b). The vertical dashed line and corresponding black dot represent the 307 

average observed value, and the horizontal error bar and corresponding gray shading its 95% 308 

confidence interval (as determined by bootstrapping). The horizontal dashed line and 309 

corresponding black dot represent the average forecast value, and the vertical error bar and 310 

corresponding gray shading its 95% confidence interval. 311 

 312 

 313 

 314 
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Figure 3 | Vertical profile of the mean NAM and of the CSS of the NAM. a-b  The mean 315 

NAM index averaged over 16-60 days after all SSWs (red) and the control dates (blue) as a 316 

function of height for the observations (thick line) and the model forecasts (thin line) (a). The 317 

error bars represent the 95% confidence interval for the model forecast. The forecast skill as 318 

quantified by the CSS as a function of height (b). The difference between the SSW and control 319 

CSS is statistically significant at the 95% level where the error bars do not overlap. 320 

 321 

Figure 4 | The CSS of various variables. a-d,  The CSS of the NAM at 100 and 1000 hPa (a), 322 

NAO index (b), surface temperature (ST) over Northern Russia and Eastern Canada (indicated 323 

by the blue boxes in Figs. 1a and 1b) (c), precipitation (PCP) difference between the high latitude 324 

and mid-latitude Northern Atlantic (indicated by the blue boxes in Figs. 1c and 1d) (d), and the 325 

CSS averaged over 20-90°N for SLP (b), ST (land only) (c) and PCP (d). Red (blue) bars 326 

represent the SSW (control) forecasts for a forecast range of 16-60 days. The thin lines represent 327 

the 95% confidence interval. P-values for the difference between the SSW and control CSS are 328 

given. This difference is statistically significant at the 95% level when the thick brown lines do 329 

not overlap.  330 

 331 

 332 

 333 

 334 
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