33 research outputs found

    On the pilot's behavior of detecting a system parameter change

    Get PDF
    The reaction of a human pilot, engaged in compensatory control, to a sudden change in the controlled element's characteristics is described. Taking the case where the change manifests itself as a variance change of the monitored signal, it is shown that the detection time, defined to be the time elapsed until the pilot detects the change, is related to the monitored signal and its derivative. Then, the detection behavior is modeled by an optimal controller, an optimal estimator, and a variance-ratio test mechanism that is performed for the monitored signal and its derivative. Results of a digital simulation show that the pilot's detection behavior can be well represented by the model proposed here

    Solitary neurofibroma of the gingiva with prominent differentiation of Meissner bodies : a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oral neurofibromas are peripheral nerve sheath tumors, similar to schwannomas. Histological variations in oral neurofibromas are relatively uncommon.</p> <p>Case presentation</p> <p>Here, we present a case of unique variation in the observed characteristics of a neurofibroma, with no relation to neurofibromatosis type-1 or von Recklinghausen disease of the skin. The neurofibroma was observed in the right mandibular gingiva of a 32-year-old Japanese woman. Histologically, it differed from conventional neurofibromas in that the tumor was composed of a mixture of fine fibrillary collagen in sheets and/or cords of neoplastic Schwann cells containing numerous clusters of Meissner bodies. Histologically, these bodies were in contact with neoplastic Schwann cells. The Meissner bodies were immunopositive for S-100 protein, neuron-specific enolase, and vimentin, but were negative for calretinin. CD34-positive spindle cells were observed around the Meissner bodies. No recurrence or signs of other tumors have been observed in the patient for 5 years after tumor resection.</p> <p>Conclusion</p> <p>To the best of our knowledge, no formal descriptions of sporadic, solitary neurofibromas containing numerous Meissner bodies occurring in the oral cavity are available in literature. We believe that an uncommon proliferation of Meissner bodies, as seen in the present case, may result from aberrant differentiation of neoplastic Schwann cells.</p

    Industrial Policy in Japan

    No full text

    Thermal radiation from solid rocket plumes at high altitude

    No full text

    The Primary Photochemistry of Vision Occurs at the Molecular Speed Limit

    No full text
    Ultrafast photochemical reactions are initiated by vibronic transitions from the reactant ground state to the excited potential energy surface, directly populating excited-state vibrational modes. The primary photochemical reaction of vision, the isomerization of retinal in the protein rhodopsin, is known to be a vibrationally coherent reaction, but the Franck Condon factors responsible for initiating the process have been difficult to resolve with conventional time-resolved spectroscopies. Here we employ experimental and theoretical 2D photon echo spectroscopy to directly resolve for the first time the Franck Condon factors that initiate isomerization on the excited potential energy surface and track the reaction dynamics. The spectral dynamics reveal vibrationally coherent isomerization occurring on the fastest possible time scale, that of a single period of the local torsional reaction coordinate. We successfully model this process as coherent wavepacket motion through a conical intersection on a 30 fs time scale, confirming the reaction coordinate as a local torsional coordinate with a frequency of 670 cm'. As a result of spectral features being spread out along two frequency coordinates, we unambiguously assign reactant and product states following passage through the conical intersection, which reveal the key vibronic transitions that initiate the vibrationally coherent photochemistry of vision

    The Primary Photochemistry of Vision Occurs at the Molecular Speed Limit

    Get PDF
    Ultrafast photochemical reactions are initiated by vibronic transitions from the reactant ground state to the excited potential energy surface, directly populating excited-state vibrational modes. The primary photochemical reaction of vision, the isomerization of retinal in the protein rhodopsin, is known to be a vibrationally coherent reaction, but the Franck Condon factors responsible for initiating the process have been difficult to resolve with conventional time-resolved spectroscopies. Here we employ experimental and theoretical 2D photon echo spectroscopy to directly resolve for the first time the Franck Condon factors that initiate isomerization on the excited potential energy surface and track the reaction dynamics. The spectral dynamics reveal vibrationally coherent isomerization occurring on the fastest possible time scale, that of a single period of the local torsional reaction coordinate. We successfully model this process as coherent wavepacket motion through a conical intersection on a 30 fs time scale, confirming the reaction coordinate as a local torsional coordinate with a frequency of 670 cm'. As a result of spectral features being spread out along two frequency coordinates, we unambiguously assign reactant and product states following passage through the conical intersection, which reveal the key vibronic transitions that initiate the vibrationally coherent photochemistry of vision
    corecore