41 research outputs found
Bosons Doubling
It is shown that next-nearest-neighbor interactions may lead to unusual
paramagnetic or ferromagnetic phases which physical content is radically
different from the standard phases. Actually there are several particles
described by the same quantum field in a manner similar to the species doubling
of the lattice fermions. We prove the renormalizability of the theory at the
one loop level.Comment: 12 page
Dirac monopole with Feynman brackets
We introduce the magnetic angular momentum as a consequence of the structure
of the sO(3) Lie algebra defined by the Feynman brackets. The Poincare momentum
and Dirac magnetic monopole appears as a direct result of this framework.Comment: 10 page
Noncommutative Quantum Mechanics Viewed from Feynman Formalism
Dyson published in 1990 a proof due to Feynman of the Maxwell equations. This
proof is based on the assumption of simple commutation relations between
position and velocity. We first study a nonrelativistic particle using Feynman
formalism. We show that Poincar\'{e}'s magnetic angular momentum and Dirac
magnetic monopole are the direct consequences of the structure of the sO(3) Lie
algebra in Feynman formalism. Then we show how to extend this formalism to the
dual momentum space with the aim of introducing Noncommutative Quantum
Mechanics which was recently the subject of a wide range of works from particle
physics to condensed matter physics.Comment: 11 pages, To appear in the Proceedings of the Lorentz Workshop
"Beyond the Quantum", eds. Th.M. Nieuwenhuizen et al., World Scientific,
Singapore, 2007. Added reference
Renormalization Group in Quantum Mechanics
We establish the renormalization group equation for the running action in the
context of a one quantum particle system. This equation is deduced by
integrating each fourier mode after the other in the path integral formalism.
It is free of the well known pathologies which appear in quantum field theory
due to the sharp cutoff. We show that for an arbitrary background path the
usual local form of the action is not preserved by the flow. To cure this
problem we consider a more general action than usual which is stable by the
renormalization group flow. It allows us to obtain a new consistent
renormalization group equation for the action.Comment: 20 page
Semiclassical quantization of electrons in magnetic fields: the generalized Peierls substitution
A generalized Peierls substitution which takes into account a Berry phase
term must be considered for the semiclassical treatment of electrons in a
magnetic field. This substitution turns out to be an essential element for the
correct determination of the semiclassical equations of motion as well as for
the semiclassical Bohr-Sommerfeld quantization condition for energy levels. A
general expression for the cross-sectional area is derived and used as an
illustration for the calculation of the energy levels of Bloch and Dirac
electrons
Semiclassical Dynamics of Electrons in Magnetic Bloch Bands: a Hamiltonian Approach
y formally diagonalizing with accuracy the Hamiltonian of electrons
in a crystal subject to electromagnetic perturbations, we resolve the debate on
the Hamiltonian nature of semiclassical equations of motion with Berry-phase
corrections, and therefore confirm the validity of the Liouville theorem. We
show that both the position and momentum operators acquire a Berry-phase
dependence, leading to a non-canonical Hamiltonian dynamics. The equations of
motion turn out to be identical to the ones previously derived in the context
of electron wave-packets dynamics.Comment: 4 page