430 research outputs found
LOCV calculation for Beta-stable matter at finite temperature
The method of lowest-order constrained variational, which predicts reasonably
the nuclear matter semi-empirical data is used to calculate the equation of
state of beta-stable matter at finite temperature. The Reid soft-core with and
without the N- interactions which fits the N-N scattering data as well
as the potential plus the three-nucleon interaction are considered in
the nuclear many-body Hamiltonian. The electron and muon are treated
relativistically in the total Hamiltonian at given temperature, to make the
fluid electrically neutral and stable against beta decay. The calculation is
performed for a wide range of baryon density and temperature which are of
interest in the astrophysics. The free energy, entropy, proton abundance, etc.
of nuclear beta-stable matter are calculated.
It is shown that by increasing the temperature, the maximum proton abundance
is pushed to the lower density while the maximum itself increases as we
increase the temperature. The proton fraction is not enough to see any
gas-liquid phase transition. Finally we get an overall agreement with other
many-body techniques, which are available only at zero temperature.Comment: LaTex, 20 page
Variational Calculation for the Equation of State of Nuclear Matter at Finite Temperatures
An equation of state (EOS) for uniform nuclear matter is constructed at zero
and finite temperatures with the variational method starting from the realistic
nuclear Hamiltonian composed of the Argonne V18 and UIX potentials. The energy
is evaluated in the two-body cluster approximation with the three-body-force
contribution treated phenomenologically so as to reproduce the empirical
saturation conditions. The obtained energies for symmetric nuclear matter and
neutron matter at zero temperature are in fair agreement with those by Akmal,
Pandharipande and Ravenhall, and the maximum mass of the neutron star is 2.2
Msolar. At finite temperatures, a variational method by Schmidt and
Pandharipande is employed to evaluate the free energy, which is used to derive
various thermodynamic quantities of nuclear matter necessary for supernova
simulations. The result of this variational method at finite temperatures is
found to be self-consistent.Comment: Revised Versio
Finite temperature calculations for the bulk properties of strange star using a many-body approach
We have considered a hot strange star matter, just after the collapse of a
supernova, as a composition of strange, up and down quarks to calculate the
bulk properties of this system at finite temperature with the density dependent
bag constant. To parameterize the density dependent bag constant, we use our
results for the lowest order constrained variational (LOCV) calculations of
asymmetric nuclear matter. Our calculations for the structure properties of the
strange star at different temperatures indicate that its maximum mass decreases
by increasing the temperature. We have also compared our results with those of
a fixed value of the bag constant. It can be seen that the density dependent
bag constant leads to higher values of the maximum mass and radius for the
strange star.Comment: 21 pages, 2 tables, 12 figures Astrophys. (2011) accepte
Soil seal development under simulated rainfall: structural, physical and hydrological dynamics
This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 minutes). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 - 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24 - 0.48 mm below the soil surface. This contrasting behaviour was related to different dynamics and processes of seal formation which depended on the soil properties. The impact of rainfall-induced surface sealing on the hydrological behaviour of soil (as represented by WDTP and Kun) was rapid and substantial: an average 60% reduction in Kun occurred for all soils between 2 and 9 minutes rainfall, and water repellent surfaces were identified for SZL and ZCL. This highlights that the condition of the immediate surface of agricultural soils involving rainfall-induced structural seals has a strong impact in the overall ability of soil to function as water reservoir
Therapeutic effect of bevacizumab injected into the silicone oil in eyes with neovascular glaucoma after vitrectomy for advanced diabetic retinopathy
Purpose To evaluate the effect of intra-silicone injection of bevacizumab for the treatment of neovascular glaucoma (NVG) after vitrectomy for advanced proliferative diabetic retinopathy.Methods Bevacizumab was injected into the silicone oil in five pseudophakic eyes of five patients with NVG. The iris neovascularization (INV) and NVG had developed 1.5-4 months after vitrectomy and silicone oil tamponade. The main outcome measures were regression of INV, intraocular pressure and visual acuity.Results In all eyes, INV regressed and intraocular pressure was controlled within 7 days. Visual acuity improved in all eyes. In one patient, INV and NVG recurred 10 weeks after the injection and was successfully treated with a repeat intra-silicone bevacizumab injection.Conclusion Intra-silicone injection of bevacizumab is effective in the treatment of patients with INV and NVG after vitrectomy for advanced proliferative diabetic retinopathy. © 2010 Macmillan Publishers Limited All rights reserved
Detecting discordance enrichment among a series of two-sample genome-wide expression data sets
Background
With the current microarray and RNA-seq technologies, two-sample genome-wide expression data have been widely collected in biological and medical studies. The related differential expression analysis and gene set enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical interest. Methods
In this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter space when the number of data sets is increased. The model-based probability of discordance enrichment can be calculated for gene set detection. Results
We apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive). We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis, we observed overall similar results and the above two pathways are still the most significant detections. More interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway analysis of genome-wide association study (GWAS) data. Conclusions
This study illustrates that some disease-related pathways can be enriched in discordant molecular behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data collected by the recent RNA-seq technology
- …
