183 research outputs found

    Improvement in organophosphorus hydrolase activity of cell surface-engineered yeast strain using Flo1p anchor system

    Get PDF
    Organophosphorus hydrolase (OPH) hydrolyzes organophosphorus esters. We constructed the yeast-displayed OPH using Flo1p anchor system. In this system, the N-terminal region of the protein was fused to Flo1p and the fusion protein was displayed on the cell surface. Hydrolytic reactions with paraoxon were carried out during 24Β h of incubation of OPH-displaying cells at 30Β°C. p-Nitrophenol produced in the reaction mixture was detected by HPLC. The strain with highest activity showed 8-fold greater OPH activity compared with cells engineered using glycosylphosphatidylinositol anchor system, and showed 20-fold greater activity than Escherichia coli using the ice nucleation protein anchor system. These results indicate that Flo1p anchor system is suitable for display of OPH in the cell surface-expression systems

    Gene Organization in Rice Revealed by Full-Length cDNA Mapping and Gene Expression Analysis through Microarray

    Get PDF
    Rice (Oryza sativa L.) is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA) sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE) genes, 33K annotated non-expressed (ANE) genes, and 5.5K non-annotated expressed (NAE) genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria

    Prognostic Significance of Vitamin D Receptor Polymorphisms in Head and Neck Squamous Cell Carcinoma

    Get PDF
    BACKGROUND:In patients with advanced non-small-cell lung cancer, vitamin D receptor (VDR) polymorphisms and haplotypes are reported to be associated with survival. We hypothesized that a similar association would be observed in patients with head and neck squamous-cell carcinoma (HNSCC). METHODS:In a post-hoc analysis of our previous prospective cohort study, VDR polymorphisms including Cdx2 G/A (rs11568820), FokI C/T (rs10735810), BsmI A/G (rs1544410), ApaI G/T (rs7976091), and TaqI T/C (rs731236) were genotyped by sequencing in 204 consecutive patients with HNSCC who underwent tumor resection. Progression-free survival was compared between VDR polymorphisms using Kaplan-Meier survival curves with log-rank tests and Cox proportional hazard models adjusting for age, gender, smoking status, primary tumor sites, postoperative stages, existence of residual tumor, and postoperative treatment with chemotherapy or radiotherapy. RESULTS:During a median follow-up of 1,047 days, tumor progression and death occurred in 76 (37.3%) and 27 (13.2%) patients, respectively. The FokI T/T genotype was associated with poor progression-free survival: median survival for T/T was 265 days compared with 1,127 days for C/C or C/T (log-rank test: Pβ€Š=β€Š0.0004; adjusted hazard ratio, 3.03; 95% confidence interval, 1.62 to 5.67; Pβ€Š=β€Š0.001). In contrast, the other polymorphisms (Cdx2, BsmI, ApaI, TaqI) showed no significant association with progression-free survival. The A-T-G (Cdx2-FokI-ApaI) haplotype demonstrated a significant association with a higher progression rate (Pβ€Š=β€Š0.02). CONCLUSION:These results suggest that VDR polymorphisms and haplotypes may be associated with prognosis in patients with HNSCC, although the sample size is not large enough to draw definitive conclusions

    Insulin Concentration Modulates Hepatic Lipid Accumulation in Mice in Part via Transcriptional Regulation of Fatty Acid Transport Proteins

    Get PDF
    Fatty liver disease (FLD) is commonly associated with insulin resistance and obesity, but interestingly it is also observed at low insulin states, such as prolonged fasting. Thus, we asked whether insulin is an independent modulator of hepatic lipid accumulation.In mice we induced, hypo- and hyperinsulinemia associated FLD by diet induced obesity and streptozotocin treatment, respectively. The mechanism of free fatty acid induced steatosis was studied in cell culture with mouse liver cells under different insulin concentrations, pharmacological phosphoinositol-3-kinase (PI3K) inhibition and siRNA targeted gene knock-down. We found with in vivo and in vitro models that lipid storage is increased, as expected, in both hypo- and hyperinsulinemic states, and that it is mediated by signaling through either insulin receptor substrate (IRS) 1 or 2. As previously reported, IRS-1 was up-regulated at high insulin concentrations, while IRS-2 was increased at low levels of insulin concentration. Relative increase in either of these insulin substrates, was associated with an increase in liver-specific fatty acid transport proteins (FATP) 2&5, and increased lipid storage. Furthermore, utilizing pharmacological PI3K inhibition we found that the IRS-PI3K pathway was necessary for lipogenesis, while FATP responses were mediated via IRS signaling. Data from additional siRNA experiments showed that knock-down of IRSs impacted FATP levels.States of perturbed insulin signaling (low-insulin or high-insulin) both lead to increased hepatic lipid storage via FATP and IRS signaling. These novel findings offer a common mechanism of FLD pathogenesis in states of both inadequate (prolonged fasting) and ineffective (obesity) insulin signaling

    Potential for Tumorigenesis and Repair of Osteochondral Defects by iPS Cell Transplantation in Rat

    Get PDF
    Abstract Articular cartilage repair remains a challenge in the field of orthopedic medicine. Cell-based therapy for cartilage repair, such as autologous chondrocyte implantation, was established in the 1990s. However, the issue of the source from which the lesion-targeting cells are harvested remains a limitation of this approach as larger lesions require more cells for repair, and thus, more healthy tissue must be damaged to harvest the needed cells. Reprogramming of induced pluripotent stem (iPS) cells is a promising tool for cell-based regenerative therapy because of their proliferative capacity and pluripotency; however, these characteristics also create a risk of tumorigenesis. This study aimed to determine the probability of iPS cell-derived tumor occurrence as a function of injection or transplantation site, and to assess whether transplanted iPS cells can promote cartilage defect repair. Pluripotent mouse iPS cells (5x10 6 cells/ml) were subcutaneously injected or transplanted into experimentally induced lesions in the knee cartilage of immunodeficient rats. Subcutaneous teratoma formation was observed in 30% of animals (3 of 10) at 4weeks, and 41% of animals (7 of 17) at 12 weeks after iPS cell injection. Cartilage repair as indicated by modified Wakitani's score was similar in the cell-free group and in the iPS cell implantation group at 4 weeks [11.8 Β± 1.8 (n = 8) vs. 10.3 Β± 2.8 (n = 18)]. iPS cell implantation yielded a score of 7.8 Β± 2.0 (n = 10) at 12 weeks, significantly better than the cell-free group [10.5 Β± 0.6 (n = 4)]. There was no macro-or microscopic evidence of tumor formation at the cartilage repair site after iPS cell implantation. Although we could not use the iPS cells directly for cartilage repair, the results of our study indicate the potential for a new therapy for cartilage repair by developing iPS reprogramming technology

    Copy Number Analysis Identifies Novel Interactions Between Genomic Loci in Ovarian Cancer

    Get PDF
    Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions

    Candida albicans Possesses Sap7 as a Pepstatin A-Insensitive Secreted Aspartic Protease

    Get PDF
    BACKGROUND: Candida albicans, a commensal organism, is a part of the normal flora of healthy individuals. However, once the host immunity is compromised, C. albicans opportunistically causes recurrent superficial or fatal systemic candidiasis. Secreted aspartic proteases (Sap), encoded by 10 types of SAP genes, have been suggested to contribute to various virulence processes. Thus, it is important to elucidate their biochemical properties for better understanding of the molecular mechanisms that how Sap isozymes damage host tissues. METHODOLOGY/PRINCIPAL FINDINGS: The SAP7 gene was cloned from C. albicans SC5314 and heterogeneously produced by Pichia pastoris. Measurement of Sap7 proteolytic activity using the FRETS-25Ala library showed that Sap7 was a pepstatin A-insensitive protease. To understand why Sap7 was insensitive to pepstatin A, alanine substitution mutants of Sap7 were constructed. We found that M242A and T467A mutants had normal proteolytic activity and sensitivity to pepstatin A. M242 and T467 were located in close proximity to the entrance to an active site, and alanine substitution at these positions widened the entrance. Our results suggest that this alteration might allow increased accessibility of pepstatin A to the active site. This inference was supported by the observation that the T467A mutant has stronger proteolytic activity than the wild type. CONCLUSIONS/SIGNIFICANCE: We found that Sap7 was a pepstatin A-insensitive protease, and that M242 and T467 restricted the accessibility of pepstatin A to the active site. This finding will lead to the development of a novel protease inhibitor beyond pepstatin A. Such a novel inhibitor will be an important research tool as well as pharmaceutical agent for patients suffering from candidiasis
    • …
    corecore