117 research outputs found

    BBF RFC 108: Synthetic Biology Open Language (SBOL) Version 2.0.0

    Get PDF
    The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards

    Synthetic Biology Open Language (SBOL) Version 2.0.0

    Get PDF
    Synthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long deve

    Synthetic biology open language visual (SBOL visual) version 3.0.

    Get PDF
    People who engineer biological organisms often find it useful to draw diagrams in order to communicate both the structure of the nucleic acid sequences that they are engineering and the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. SBOL Visual aims to organize and systematize such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 3.0 of SBOL Visual, a new major revision of the standard. The major difference between SBOL Visual 3 and SBOL Visual 2 is that diagrams and glyphs are defined with respect to the SBOL 3 data model rather than the SBOL 2 data model. A byproduct of this change is that the use of dashed undirected lines for subsystem mappings has been removed, pending future determination on how to represent general SBOL 3 constraints; in the interim, this annotation can still be used as an annotation. Finally, deprecated material has been removed from collection of glyphs: the deprecated "insulator" glyph and "macromolecule" alternative glyphs have been removed, as have the deprecated BioPAX alternatives to SBO terms

    BBF RFC 112: Synthetic Biology Open Language (SBOL) Version 2.1.0

    Get PDF
    BBF RFC 112 (the SBOL 2.1.0 standard) replaces BBF RFC 108 (the SBOL 2.0 standard), as well as the minor update SBOL 2.0.1.The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information

    Synthetic biology open language visual (SBOL Visual) version 2.3

    Get PDF
    People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs. This document details version 2.3 of SBOL Visual, which builds on the prior SBOL Visual 2.2 in several ways. First, the specification now includes higher-level "interactions with interactions," such as an inducer molecule stimulating a repression interaction. Second, binding with a nucleic acid backbone can be shown by overlapping glyphs, as with other molecular complexes. Finally, a new "unspecified interaction" glyph is added for visualizing interactions whose nature is unknown, the "insulator" glyph is deprecated in favor of a new "inert DNA spacer" glyph, and the polypeptide region glyph is recommended for showing 2A sequences

    Synthetic Biology Open Language (SBOL) Version 1.1.0

    Get PDF
    In this BioBricks Foundation Request for Comments (BBF RFC), we specify the Synthetic Biology Open Language (SBOL) Version 1.1.0 to enable the electronic exchange of information describing DNA components used in synthetic biology. We define: 1. the vocabulary, a set of preferred terms and 2. the core data model, a common computational representation

    Synthetic biology open language (SBOL) version 3.1.0

    Get PDF
    Abstract Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. When designing a synthetic system, synthetic biologists need to exchange information about multiple types of molecules, the intended behavior of the system, and actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, following an open community process involving both bench scientists and scientific modelers and software developers, across academia, industry, and other institutions. This document describes SBOL 3.1.0, which improves on version 3.0.0 by including a number of corrections and clarifications as well as several other updates and enhancements. First, this version includes a complete set of validation rules for checking whether documents are valid SBOL 3. Second, the best practices section has been moved to an online repository that allows for more rapid and interactive of sharing these conventions. Third, it includes updates based upon six community approved enhancement proposals. Two enhancement proposals are related to the representation of an object’s namespace. In particular, the Namespace class has been removed and replaced with a namespace property on each class. Another enhancement is the generalization of the CombinatorialDeriviation class to allow direct use of Features and Measures. Next, the Participation class now allow Interactions to be participants to describe higher-order interactions. Another change is the use of Sequence Ontology terms for Feature orientation. Finally, this version of SBOL has generalized from using Unique Reference Identifiers (URIs) to Internationalized Resource Identifiers (IRIs) to support international character sets.</jats:p

    The role of a Mediterranean diet on the risk of oral and pharyngeal cancer.

    Get PDF
    BACKGROUND: The Mediterranean diet has a beneficial role on various neoplasms, but data are scanty on oral cavity and pharyngeal (OCP) cancer. METHODS: We analysed data from a case-control study carried out between 1997 and 2009 in Italy and Switzerland, including 768 incident, histologically confirmed OCP cancer cases and 2078 hospital controls. Adherence to the Mediterranean diet was measured using the Mediterranean Diet Score (MDS) based on the major characteristics of the Mediterranean diet, and two other scores, the Mediterranean Dietary Pattern Adherence Index (MDP) and the Mediterranean Adequacy Index (MAI). RESULTS: We estimated the odds ratios (ORs), and the corresponding 95% confidence intervals (CI), for increasing levels of the scores (i.e., increasing adherence) using multiple logistic regression models. We found a reduced risk of OCP cancer for increasing levels of the MDS, the ORs for subjects with six or more MDS components compared with two or less being 0.20 (95% CI 0.14-0.28, P-value for trend &lt;0.0001). The ORs for the highest vs the lowest quintile were 0.20 (95% CI 0.14-0.28) for the MDP score (score 66.2 or more vs less than 57.9), and 0.48 (95% CI 0.33-0.69) for the MAI score (score value 2.1 or more vs value less 0.92), with significant trends of decreasing risk for both scores. The favourable effect of the Mediterranean diet was apparently stronger in younger subjects, in those with a higher level of education, and in ex-smokers, although it was observed in other strata as well. CONCLUSIONS: Our study provides strong evidence of a beneficial role of the Mediterranean diet on OCP cancer
    corecore