620 research outputs found
Isoproterenol modulates insulin activation of insulin receptor kinase in intact rat adipocytes
Isoproterenol decreases activation by insulin of insulin receptor kinase in intact rat adipocytes
The relationship between insulin binding, insulin activation of insulin-receptor tyrosine kinase, and insulin stimulation of glucose uptake in isolated rat adipocytes
We have studied the relationship between insulin activation of insulin-receptor kinase and insulin stimulation of glucose uptake in isolated rat adipocytes. Glucose uptake was half-maximally or maximally stimulated, respectively, when only 4% or 14% of the maximal kinase activity had been reached. To investigate this relationship also under conditions where the insulin effect on activation of receptor kinase was decreased, the adipocytes were exposed to 10 microM-isoprenaline alone or with 5 micrograms of adenosine deaminase/ml. An approx. 30% (isoprenaline) or approx. 50% (isoprenaline + adenosine deaminase) decrease in the insulin effect on receptor kinase activity was found at insulin concentrations between 0.4 and 20 ng/ml, and this could not be explained by decreased insulin binding. The decreased insulin-effect on kinase activity was closely correlated with a loss of insulin-sensitivity of glucose uptake. Moreover, our data indicate that the relation between receptor kinase activity and glucose uptake (expressed as percentage of maximal uptake) remained unchanged. The following conclusions were drawn. (1) If activation of receptor kinase stimulates glucose uptake, only 14% of the maximal kinase activity is sufficient for maximal stimulation. (2) Isoprenaline decreases the coupling efficiency between insulin binding and receptor-kinase activation, this being accompanied by a corresponding decrease in sensitivity of glucose uptake. (3) Our data indicate that the signalling for glucose uptake is closely related to receptor-kinase activity, even when the coupling efficiency between insulin binding and kinase activation is altered. They thus support the hypothesis that receptor-kinase activity reflects the signal which originates from the receptor and which is transduced to the glucose-transport system
Activstion of insulin-receptor-kinase in intact HIRc and hepatoma G2-cells: Effect of dexamethasone
Effekt von Dexamethason auf die Insulinbindung und die insulinabhängige Aktivierung der Insulinrezeptorkinase in intakten Zellen
Effekt von Isoproterenol auf Insulinbindung und insulin-abhängige Aktivierung der Insulinrezeptorkinase in intakten Rattenadipozyten
Promoter hypermethylation of SHOX2 and SEPT9 is a potential biomarker for minimally invasive diagnosis in adenocarcinomas of the biliary tract
Clinicopathological data of the 20 biliary tract cancer cases and 100 gender- and age-matched controls included in plasma study. (XLSX 116 kb
Multipoint Schur algorithm and orthogonal rational functions: convergence properties, I
Classical Schur analysis is intimately connected to the theory of orthogonal
polynomials on the circle [Simon, 2005]. We investigate here the connection
between multipoint Schur analysis and orthogonal rational functions.
Specifically, we study the convergence of the Wall rational functions via the
development of a rational analogue to the Szeg\H o theory, in the case where
the interpolation points may accumulate on the unit circle. This leads us to
generalize results from [Khrushchev,2001], [Bultheel et al., 1999], and yields
asymptotics of a novel type.Comment: a preliminary version, 39 pages; some changes in the Introduction,
Section 5 (Szeg\H o type asymptotics) is extende
CHARACTERISTICS AND STABILIZATION OF DNAASE-SENSITIVE PROTEIN SYNTHESIS IN E. COLI EXTRACTS
MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors
BACKGROUND
MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated.
METHODS
Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets.
RESULTS
Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change.
CONCLUSIONS
Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers
- …
