11,730 research outputs found

    Magnetic transitions in Pr2NiO4 single crystal

    Get PDF
    The magnetic properties of a stoichiometric Pr2NiO4 single crystal have been examined by means of the temperature dependence of the complex ac susceptibility and the isothermal magnetization in fields up to 200 kOe at T=4.2 K. Three separate phases have been identified and their anisotropic character has been analyzed. A collinear antiferromagnetic phase appears first between TN = 325 K and Tc1 = 115 K, where the Pr ions are polarized by an internal magnetic field. At Tc1 a first modification of the magnetic structure occurs in parallel with a structural phase transition (Bmab to P42/ncm). This magnetic transition has a first‐order character and involves both the out‐of‐plane and the in‐plane spin components (magnetic modes gx and gxcyfz, respectively). A second magnetic transition having also a first‐order character is also clearly identified at Tc2 = 90 K which corresponds to a spin reorientation process (gxcyfz to cxgyaz magnetic modes). It should be noted as well that the out‐of‐phase component of χac shows a peak around 30 K which reflects the coexistence of both magnetic configurations in a wide temperature interval. Finally, two field‐induced transitions have been observed at 4.2 K when the field is directed along the c axis. We propose that the high‐field anomaly arises from a metamagnetic transition of the weak ferromagnetic component, similarly to La2CuO4

    PremiÚre découverte d'un Arthrodire (Placodermi, Vertebrata) dans le Dévonien d'Amérique du Sud

    Get PDF
    Des plaques dermiques d'un grand Arthrodire eubrachyhtoracide (Placodermi, Vertebrata), provisoirement attribuées à un Dunkleosteidae, ont été découvertes dans les faciÚs détritique de la Formation de Colpacucho (Famennien), sur la Péninsule de Cumana (Lac Titicaca, Bolivie). Il s'agit de la premiÚre découverte de restes d'Arthrodires en Amérique du Sud. Ces plaques d'Arthrodire sont associées à une épine de Chondrichthyen évoquant certaines espÚces de "Ctenacanthus" du Famennien et du CarbonifÚre inférieur (Résumé d'auteur

    Compact groups from semi-analytical models of galaxy formation -- V: their assembly channels as a function of the environment

    Full text link
    We delved into the assembly pathways and environments of compact groups (CGs) of galaxies using mock catalogues generated from semi-analytical models (SAMs) on the Millennium simulation. We investigate the ability of SAMs to replicate the observed CG environments and whether CGs with different assembly histories tend to inhabit specific cosmic environments. We also analyse whether the environment or the assembly history is more important in tailoring CG properties. We find that about half of the CGs in SAMs are non-embedded systems, 40% are inhabiting loose groups or nodes of filaments, while the rest distribute evenly in filaments and voids, in agreement with observations. We observe that early-assembled CGs preferentially inhabit large galaxy systems (~ 60%), while around 30% remain non-embedded. Conversely, lately-formed CGs exhibit the opposite trend. We also obtain that lately-formed CGs have lower velocity dispersions and larger crossing times than early-formed CGs, but mainly because they are preferentially non-embedded. Those lately-formed CGs that inhabit large systems do not show the same features. Therefore, the environment plays a strong role in these properties for lately-formed CGs. Early-formed CGs are more evolved, displaying larger velocity dispersions, shorter crossing times, and more dominant first-ranked galaxies, regardless of the environment. Finally, the difference in brightness between the two brightest members of CGs is dependent only on the assembly history and not on the environment. CGs residing in diverse environments have undergone varied assembly processes, making them suitable for studying their evolution and the interplay of nature and nurture on their traits.Comment: 13 pages, 8 figures. Accepted for publication in MNRA

    Bounds for Lepton Flavor Violation and the Pseudoscalar Higgs in the General Two Higgs Doublet Model using g−2g-2 muon factor

    Full text link
    Current experimental data from the g−2g-2 muon factor, seems to show the necessity of physics beyond the Standard Model (SM), since the difference between SM and experimental predictions is 2.6σ\sigma . In the framework of the General Two Higgs Doublet Model (2HDM), we calculate the muon anomalous magnetic moment to get lower and upper bounds for the Flavour Changing (FC) Yukawa couplings in the leptonic sector. We also obtain lower bounds for the mass of the pseudoscalar Higgs (mA0m_{A^0}) as a function of the parameters of the model.Comment: 12 pages, RevTex4, 5 figures. Improved presentation, updated experimental data, amplified analysis, new figures added. Subbmited to Phys. Rev.

    Limits on excited tau leptons masses from leptonic tau decays

    Full text link
    We study the effects induced by excited leptons on the leptonic tau decay at one loop level. Using a general effective lagrangian approach to describe the couplings of the excited leptons, we compute their contributions to the leptonic decays and use the current experimental values of the branching ratios to put limits on the mass of excited states and the substructure scale.Comment: 10 pages, 6 figures, to be published in Phys. Rev.

    Hickson-like compact groups inhabiting different environments

    Full text link
    Although Compact Groups of galaxies (CGs) have been envisioned as isolated extremely dense structures in the Universe, it is accepted today that many of them could be not as isolated as thought. In this work, we study Hickson-like CGs identified in the Sloan Digital Sky Survey Data Release 16 to analyse these systems and their galaxies when embedded in different cosmological structures. To achieve this goal, we identify several cosmological structures where CGs can reside: Nodes of filaments, Loose Groups, Filaments and cosmic Voids. Our results indicate that 45 per cent of CGs do not reside in any of these structures, i.e., they can be considered non-embedded or isolated systems. Most of the embedded CGs are found inhabiting Loose Groups and Nodes, while there are almost no CGs residing well inside cosmic Voids. Some physical properties of CGs vary depending on the environment they inhabit. CGs in Nodes show the largest velocity dispersions, the brightest absolute magnitude of the first-ranked galaxy, and the smallest crossing times, while the opposite occurs in Non-Embedded CGs. When comparing galaxies in all the environments and galaxies in CGs, CGs show the highest fractions of red/early-type galaxy members in most of the absolute magnitudes ranges. The variation between galaxies in CGs inhabiting one or another environment is not as significant as the differences caused by belonging or not to a CG. Our results suggest a plausible scenario for galaxy evolution in CGs in which both, large-scale and local environments play essential roles.Comment: 16 pages, 9 figures, 1 table, accepted for publication in MNRA

    New Clues About Light Sterile Neutrinos: Preference for Models with Damping Effects in Global Fits

    Full text link
    This article reports global fits of short-baseline neutrino data to oscillation models involving light sterile neutrinos. In the commonly-used 3+1 plane wave model, there is a well-known 4.9σ\sigma tension between data sets sensitive to appearance and disappearance of neutrinos. We find that models that damp the oscillation prediction for the reactor data sets, especially at low energy, substantially improve the fits and reduce the tension. We consider two such scenarios. The first introduces one sterile neutrino (3+1) and the Quantum Mechanical wavepacket effect that accounts for the source size in reactor experiments. We find that inclusion of the wavepacket effect greatly improves the overall fit compared to the null model by Δχ2/dof=60.2/4\Delta \chi^2/\textrm{dof}=60.2/4 (7σ7\sigma improvement) with best-fit Δm2=1.4 eV2\Delta m^2=1.4~\textrm{eV}^2 and wavepacket length of 67 fm; internal tension is reduced to 3.6σ\sigma. If reactor-data only is fit, that the wavepacket preferred length is 91 fm (>20>20 fm at 99\% CL). The second model introduces oscillations involving sterile flavor and allows the decay of the heavier, mostly sterile, mass state Îœ4\nu_4. This model introduces a damping term similar to the wavepacket effect, but across all experiments. Compared to null, this has a Δχ2/dof=60.6/4\Delta \chi^2/\textrm{dof}=60.6/4 (7σ7\sigma improvement) with preferred Δm2=1.4 eV2\Delta m^2=1.4~\textrm{eV}^2 and decay Γ=0.35 eV\Gamma = 0.35~\textrm{eV}; and internal tension of 3.7σ\sigma.Comment: Errors are the prospect plot updated from the collaboration. Tension figures have updated plot styl
    • 

    corecore