130 research outputs found

    Hemoperfusive Removal of SpeciïŹc Intoxicants: The Role of the Rabbit in Preclinical Trials

    Get PDF
    Fjemelse af specifikke giftsloffer ved hemoperfusion Haemoperfusion er den foretrukne metode til direkte detoksifikation af patienter med akutte forgiftninger. Som adsorbant anvendes saedvanligvis kul. Den nyeste forskning indenfor dette omrade beskmftiger Sig med udvikling af specifikke adsorbanter til fjernelse at specitikke antistoffer, immunkomplekser 0g giftstoffer. Der gives en beskrivelse af en dyreeksperimentel model til udvikling af specifik detoksifikation ved anvendelse af haemoperfusion. Som forsagsdyr anvendes kaniner med permanente katetre i v. jugularis og a. carotis. Haemoperfusionssystemet bestïŹr af en peristaltisk pumpe og en stajle med agaroseperler (0.5—1.0 mm i diameter) indeholdende tusinder af mikrosphaerer (0.2 p. i diameter) koblet til specifikke antigener. Det arterielle blod pumpes fra a. carotis gennem sajlen til V. jugularis. Systemet perfunderes med hepariniseret saltvand (1 enh/ml) far brug, og kaninen hepariniseres med 300 enh heparin pr. kg legemsvaegt. Perfusionshastigheden er 8—15 ml/min, svarende til en perfusionshastighed p5. 20—30 min. I fig. 5 og 6 Vises resultaterne af forsog pa fjernelse af kviksolv og anti bovint serum albumin

    Challenging the Science Curriculum Paradigm: TeachingPrimary Children Atomic-Molecular Theory

    Get PDF
    Solutions to global issues demand the involvement of scientists, yet concern exists about retention rates in science as students pass through school into University. Young children are curious about science, yet are considered incapable of grappling with abstract and microscopic concepts such as atoms, sub-atomic particles, molecules and DNA. School curricula for primary (elementary) aged children reflect this by their limitation to examining only what phenomena are without providing any explanatory frameworks for how or why they occur. This research challenges the assumption that atomic-molecular theory is too difficult for young children, examining new ways of introducing atomic theory to 9 year olds and seeks to verify their efficacy in producing genuine learning in the participants. Early results in three cases in different schools indicate these novel methods fostered further interest in science, allowed diverse children to engage and learn aspects of atomic theory, and satisfied the children’s desire for intellectual challenge. Learning exceeded expectations as demonstrated in the post-interview findings. Learning was also remarkably robust, as demonstrated in two schools eight weeks after the intervention, and in one school, one year after their first exposure to ideas about atoms, elements and molecules

    Hsp60 chaperonopathies and chaperonotherapy: targets and agents.

    Get PDF

    Use of Gold Nanoparticles To Enhance Capillary Electrophoresis

    Get PDF
    We describe here the use of gold nanoparticles to manipulate the selectivity between solutes in capillary electrophoresis. Two different gold-based nanoparticles were added to the run buffer. In one case, the nanoparticles were stabilized with citrate ions, but in another study, the gold nanoparticles were capped with mercaptopropionate ions (thiol-stablized). Citrate-stabilized gold nanoparticles were used in conjunction with capillaries treated with poly(diallyldimethylammonium chloride) (PDADMAC). The positively charged PDADMAC layer on the capillary walls adsorbs the negatively charged gold nanoparticles. The model solutes that were used to study the effect of the presence of the citrate-stabilized gold nanoparticles are structural isomers of aromatic acids and bases. The presence of the PDADMAC layer and the PDADMAC plus the gold nanoparticles changes both the electroosmotic mobility and the observed mobility of the solutes. These changes in the mobilities influence the observed selectivities and the separations of the system. Thiol-stabilized gold nanoparticles were used without PDADMAC in the capillary. The model solutes studied in this part are various aromatic amines. In this case as well, the presence of the gold nanoparticles modifies the electroosmotic mobility and the observed mobility of the solutes. These changes in the mobilities are manifested in selectivity alterations. The largest change in the selectivities occurs at low concentrations of the gold nanoparticles in the run buffer. The presence of nanoparticles improves the precision of the analysis and increases the separation efficiency. Nanodispersions have attracted extensive attention in various fields of physics, biology, and chemistry. [1][2][3][4][5] Physicists and chemists are intrigued by the gradual transition of the nanomaterial properties from molecule-like to those of solid-state properties by a change of a single variable, the particle size. This property has practical and future applications for nonlinear optics and electronics. The large surface area of nanomaterials intrigues chemical engineers and catalysis scientists. Surprisingly, very little research has been devoted to the application of nanoparticles for chemical separation. In this work, we demonstrate the utility and versatility of organically modified gold nanoparticles in capillary electrophoresis (CE) separations. The nanoparticles serve as large surface area platforms for organofunctional groups that interact with the capillary surface, the analytes, or both. Thus, the apparent mobilities of target analytes, as well as the electroosmotic flow, can be altered leading to enhanced selectivities. Separation of various benzene derivatives demonstrates these capabilities. Metallic nanodispersions can be prepared in aqueous and organic solvents using diverse procedures. 1,2,6-9 Nanodispersions can be stabilized in organic solvents by the solvent itself, 10 by the addition of long chain surfactants, 11,12 or by specific ligands. 13 Stabilization of metal nanodispersions in aqueous solutions is somewhat more complicated. Several successful stabilization methods are available that are based on capping of the metal nanoparticles (e.g., citrate, 6 3-mercaptopropionate, 1

    Antibody-conjugated, dual-modal, near-infrared fluorescent iron oxide nanoparticles for antiamyloidgenic activity and specific detection of amyloid-β fibrils

    No full text
    Hadas Skaat,1 Enav Corem-Slakmon,1 Igor Grinberg,1 David Last,2 David Goez,2 Yael Mardor,2,3 Shlomo Margel1 1Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat-Gan, Israel; 2Advanced Technology Center, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; 3Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel Abstract: Amyloid-β (Aβ) peptide is the main fibrillar component of plaque deposits found in brains affected by Alzheimer's disease (AD) and is related to the pathogenesis of AD. Passive anti-Aβ immunotherapy has emerged as a promising approach for the therapy of AD, based on the administration of specific anti-Aβ monoclonal antibodies (aAβmAbs) to delay Aβ aggregation in the brain. However, the main disadvantage of this approach is the required readministration of the aAβmAbs at frequent intervals. There are only a few reports describing in vitro study for the immobilization of aAβmAbs to nanoparticles as potential targeting agents of Aβ aggregates. In this article, we report the immobilization of the aAβmAb clone BAM10 to near-infrared fluorescent maghemite nanoparticles for the inhibition of Aβ40 fibrillation kinetics and the specific detection of Aβ40 fibrils. The BAM10-conjugated iron oxide nanoparticles were well-characterized, including their immunogold labeling and cytotoxic effect on PC-12 (pheochromocytoma cell line). Indeed, these antibody-conjugated nanoparticles significantly inhibit the Aβ40 fibrillation kinetics compared with the same concentration, or even five times higher, of the free BAM10. This inhibitory effect was confirmed by different assays such as the photo-induced crosslinking of unmodified proteins combined with sodium dodecyl sulfate–polyacrylamide gel electrophoresis. A cell viability assay also confirmed that these antibody-conjugated nanoparticles significantly reduced the Aβ40-induced cytotoxicity to PC-12 cells. Furthermore, the selective labeling of the Aβ40 fibrils with the BAM10-conjugated near-infrared fluorescent iron oxide nanoparticles enabled specific detection of Aβ40 fibrils ex vivo by both magnetic resonance imaging and fluorescence imaging. This study highlights the immobilization of the aAβmAb to dual-modal nanoparticles as a potential approach for aAβmAb delivery, eliminating the issue of readministration, and contributes to the development of multifunctional agents for diagnosis and therapy of AD. Keywords: near-infrared fluorescent γ-Fe2O3 nanoparticles, protein folding, amyloid-β peptide, passive immunotherapy, neurodegenerative disease
    • 

    corecore