7,595 research outputs found

    Delayed neutrino-driven supernova explosions aided by the standing accretion-shock instability

    Full text link
    We present results of 2D hydrodynamic simulations of stellar core collapse, which confirm that the neutrino-heating mechanism remains viable for the explosion of a wider mass range of supernova progenitors with iron cores. We used an energy-dependent treatment of the neutrino transport based on the "ray-by-ray plus" approximation, in which the number, energy, and momentum equations are closed with a variable Eddington factor obtained by iteratively solving a model Boltzmann equation. We focus on the evolution of a 15 Msun progenitor and show that shock revival and the explosion are initiated at about 600 ms post bounce, powered by neutrino energy deposition. Similar to previous findings for an 11.2 Msun star, but significantly later, the onset of the explosion is fostered by the standing accretion shock instability (SASI). This instability exhibits highest growth rates for the dipole and quadrupole modes, which lead to large-amplitude bipolar shock oscillations and push the shock to larger radii, thus increasing the time accreted matter is exposed to neutrino heating in the gain layer. Therefore also convective overturn behind the shock is strengthened. A "soft" nuclear equation of state that causes a rapid contraction and a smaller radius of the forming neutron star and thus a fast release of gravitational binding energy, seems to be more favorable for an explosion. Rotation has the opposite effect because it leads to a more extended and cooler neutron star and thus lower neutrino luminosities and mean energies and overall less neutrino heating. Neutron star g-mode oscillations and the acoustic mechanism play no important role in our simulations. (abridged)Comment: 46 pages, 20 figures, 59 eps files; submitted to ApJ; significantly extended and revised version to account for referee comments; high-resolution images can be obtained upon reques

    Dynamics of the Mott Insulator to Superfluid quantum phase transition in the truncated Wigner approximation

    Get PDF
    The quantum phase transition from the Mott insulator state to the superfluid in the Bose-Hubbard model is investigated. We research one, two and three dimensional lattices in the truncated Wigner approximation. We compute both kinetic and potential energy and they turn out to have a power law behaviour as a function of the transition rate, with the power equal to 1/3. The same applies to the total energy in a system with a harmonic trap, which is usually present in the experimental set-up. These observations are in agreement with the experiment of [8], where such scalings were also observed and the power of the decay was numerically close to 1/3. The results confirm the Kibble-Zurek (adiabatic-impulse-adiabatic approximation) scenario for this transition.Comment: 14 pages, 11 figures; Laser Physics Workshop (LPHYS'12) Proceedings, Calgary 201

    Radiative Corrections to the top quark width

    Full text link
    Calculations of radiative corrections to the top quark width are reviewed. QCD effects are discussed for t−tˉt-\bar t systems produced in e+e−e^+e^- annihilation near the energy threshold.}Comment: Karlsruhe Univ. preprint TTP 93-21, 6p., 2 figures not included (Talk presented by M. Je\.zabek at the Workshop on Physics and Experiments at Linear e+e−e^+e^- Colliders, Waikoloa, Hawaii, April 1993

    A ring of BEC pools as a trap for persistent flow

    Full text link
    Mott insulator - superfluid transition in a periodic lattice of Josephson junctions can be driven by tunneling rate increase. Resulting winding numbers WW of the condensate wavefunction decrease with increasing quench time in accord with the Kibble-Zurek mechanism (KZM). However, in very slow quenches Bose-Hubbard dynamics rearranges wavefunction phase so that its random walk cools, W2ˉ\bar{W^2} decreases and eventually the wavefunction becomes too cold to overcome potential barriers separating different WW. Thus, in contrast with KZM, in very slow quenches W2ˉ\bar{W^2} is set by random walk with "critical" step size, independently of τQ\tau_Q.Comment: Decompressed version to appear in Phys. Rev.

    Neutrino-driven explosions twenty years after SN1987A

    Full text link
    The neutrino-heating mechanism remains a viable possibility for the cause of the explosion in a wide mass range of supernova progenitors. This is demonstrated by recent two-dimensional hydrodynamic simulations with detailed, energy-dependent neutrino transport. Neutrino-driven explosions were not only found for stars in the range of 8-10 solar masses with ONeMg cores and in case of the iron core collapse of a progenitor with 11 solar masses, but also for a ``typical'' progenitor model of 15 solar masses. For such more massive stars, however, the explosion occurs significantly later than so far thought, and is crucially supported by large-amplitude bipolar oscillations due to the nonradial standing accretion shock instability (SASI), whose low (dipole and quadrupole) modes can develop large growth rates in conditions where convective instability is damped or even suppressed. The dominance of low-mode deformation at the time of shock revival has been recognized as a possible explanation of large pulsar kicks and of large-scale mixing phenomena observed in supernovae like SN 1987A.Comment: 11 pages, 6 figures; review proceeding for "Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters" AIP, New York, eds. S. Immler, K.W. Weiler, and R. McCra

    Quench from Mott Insulator to Superfluid

    Full text link
    We study a linear ramp of the nearest-neighbor tunneling rate in the Bose-Hubbard model driving the system from the Mott insulator state into the superfluid phase. We employ the truncated Wigner approximation to simulate linear quenches of a uniform system in 1,2, and 3 dimensions, and in a harmonic trap in 3 dimensions. In all these setups the excitation energy decays like one over third root of the quench time. The -1/3 scaling arises from an impulse-adiabatic approximation - a variant of the Kibble-Zurek mechanism - describing a crossover from non-adiabatic to adiabatic evolution when the system begins to keep pace with the increasing tunneling rate.Comment: 10 pages, 13 figures; version published in Phys. Rev.

    Symmetry breaking bias and the dynamics of a quantum phase transition

    Full text link
    The Kibble-Zurek mechanism predicts the formation of topological defects and other excitations that quantify how much a quantum system driven across a quantum critical point fails to be adiabatic. We point out that, thanks to the divergent linear susceptibility at the critical point, even a tiny symmetry breaking bias can restore the adiabaticity. The minimal required bias scales like τQ−βδ/(1+zν)\tau_Q^{-\beta\delta/(1+z\nu)}, where β,δ,z,ν\beta,\delta,z,\nu are the critical exponents and τQ\tau_Q is a quench time. We test this prediction by DMRG simulations of the quantum Ising chain. It is directly applicable to the recent emulation of quantum phase transition dynamics in the Ising chain with ultracold Rydberg atoms.Comment: 5+1 pages, 5+1 figures; close to published versio

    High-frequency QPOs as a problem in physics: non-linear resonance

    Full text link
    The presence of a kHz frequency in LMXBs has been expected from scaling laws, by analogy with the QPO phenomenon in HMXB X-ray pulsars. Interpretation of the two kHz frequencies, observed in accreting neutron stars, in terms of non-linear resonance in strong-field gravity led to the prediction of twin QPOs in black hole systems, in a definite frequency ratio (such as 2/3). The imprint of a subharmonic of the 401 Hz rotation rate in the frequencies of the QPOs detected in the accreting millisecond pulsar is at once a signature of non-linear resonance and of coupling between accretion disk modes and the neutron star spin.Comment: presented at X-ray Timing 2003: Rossi and Beyond, Boston, November 200
    • …
    corecore