274 research outputs found
A Hybrid Approach to Mining Conditions
Text mining pursues producing valuable information from natural language text. Conditions cannot be neglected because it may easily lead to misinterpretations. There are naive proposals to mine con ditions that rely on user-defined patterns, which falls short; there is only one machine-learning proposal, but it requires to provide specific-purpose dictionaries, taxonomies, and heuristics, it works on opinion sentences only, and it was evaluated very shallowly. We present a novel hybrid approach that relies on computational linguistics and deep learning; our experiments prove that it is more effective than current proposals in terms of F1 score and does not have their drawbacks
Developing a selfâconsistent description of Titan's upper atmosphere without hydrodynamic escape
In this study, we develop a best fit description of Titan's upper atmosphere between 500âkm and 1500 km, using a oneâdimensional (1âD) version of the threeâdimensional (3âD) Titan Global IonosphereâThermosphere Model. For this modeling, we use constraints from several lower atmospheric CassiniâHuygens investigations and validate our simulation results against in situ Cassini IonâNeutral Mass Spectrometer (INMS) measurements of N 2 , CH 4 , H 2 , 40 Ar, HCN, and the major stable isotopic ratios of 14 N/ 15 N in N 2 . We focus our investigation on aspects of Titan's upper atmosphere that determine the amount of atmospheric escape required to match the INMS measurements: the amount of turbulence, the inclusion of chemistry, and the effects of including a selfâconsistent thermal balance. We systematically examine both hydrodynamic escape scenarios for methane and scenarios with significantly reduced atmospheric escape. Our results show that the optimum configuration of Titan's upper atmosphere is one with a methane homopause near 1000 km and atmospheric escape rates of 1.41â1.47âĂ10 11 CH 4 âm â2 s â1 and 1.08âĂ10 14 âH 2 âm â2 s â1 (scaled relative to the surface). We also demonstrate that simulations consistent with hydrodynamic escape of methane systematically produce inferior fits to the multiple validation points presented here. Key Points The methane homopause is most likely near 1000 km altitude Hydrodynamic escape of methane is not required to match INMS Molecular hydrogen is best fit with a methane homopause of 1000 kmPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108005/1/jgra51076.pd
New Insights into Dissipation in the Electron Layer During Magnetic Reconnection
Detailed comparisons are reported between laboratory observations of
electron-scale dissipation layers near a reconnecting X-line and direct
two-dimensional full-particle simulations. Many experimental features of the
electron layers, such as insensitivity to the ion mass, are reproduced by the
simulations; the layer thickness, however, is about 3-5 times larger than the
predictions. Consequently, the leading candidate 2D mechanism based on
collisionless electron nongyrotropic pressure is insufficient to explain the
observed reconnection rates. These results suggest that, in addition to the
residual collisions, 3D effects play an important role in electron-scale
dissipation during fast reconnection.Comment: 17 pages, 4 figure
Solar wind interaction with comet 67P: impacts of corotating interaction regions
International audienceWe present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1â2.7 AU from the Sun and the neutral outgassing rate âŒ1025â1026 sâ1, the CIRs significantly influence the cometary plasma environment at altitudes down to 10â30 km. The ionospheric low-energy (âŒ5 eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below â20 V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (âŒ10â100 eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2â5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events
Zooming in on local level statistics by supersymmetric extension of free probability
We consider unitary ensembles of Hermitian NxN matrices H with a confining
potential NV where V is analytic and uniformly convex. From work by
Zinn-Justin, Collins, and Guionnet and Maida it is known that the large-N limit
of the characteristic function for a finite-rank Fourier variable K is
determined by the Voiculescu R-transform, a key object in free probability
theory. Going beyond these results, we argue that the same holds true when the
finite-rank operator K has the form that is required by the Wegner-Efetov
supersymmetry method of integration over commuting and anti-commuting
variables. This insight leads to a potent new technique for the study of local
statistics, e.g., level correlations. We illustrate the new technique by
demonstrating universality in a random matrix model of stochastic scattering.Comment: 38 pages, 3 figures, published version, minor changes in Section
Spatial distribution of low-energy plasma around 2 comet 67P/CG from Rosetta measurements
International audienceWe use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be âŒ1-2·10 â6 , at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as âŒ1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet
- âŠ