1,219 research outputs found

    Comparisons and Combinations of Reactor and Long-Baseline Neutrino Oscillation Measurements

    Full text link
    We investigate how the data from various future neutrino oscillation experiments will constrain the physics parameters for a three active neutrino mixing model. The investigations properly account for the degeneracies and ambiguities associated with the phenomenology as well as estimates of experimental measurement errors. Combinations of various reactor measurements with the expected J-PARC (T2K) and NuMI offaxis (Nova) data, both with and without the increased flux associated with proton driver upgrades, are considered. The studies show how combinations of reactor and offaxis data can resolve degeneracies (e.g. the theta23 degeneracy) and give more precise information on the oscillation parameters. A primary purpose of this investigation is to establish the parameter space regions where CP violation can be discovered and where the mass hierarchy can be determined. It is found that such measurements, even with the augmented flux from proton driver upgrades, demand sin^2 (2 theta13) be fairly large and in the range where it is measurable by reactor experiments.Comment: 25 pages, 13 figures, fixed typos; 25 pages, 13 figures, updated content, references; previous 22 pages, 12 figures, added references and fixed reference display proble

    Spatiotemporal Stochastic Resonance in Fully Frustrated Josephson Ladders

    Full text link
    We consider a Josephson-junction ladder in an external magnetic field with half flux quantum per plaquette. When driven by external currents, periodic in time and staggered in space, such a fully frustrated system is found to display spatiotemporal stochastic resonance under the influence of thermal noise. Such resonance behavior is investigated both numerically and analytically, which reveals significant effects of anisotropy and yields rich physics.Comment: 8 pages in two columns, 8 figures, to appear in Phys. Rev.

    Quantum Key Distribution Using Quantum Faraday Rotators

    Full text link
    We propose a new quantum key distribution (QKD) protocol based on the fully quantum mechanical states of the Faraday rotators. The protocol is unconditionally secure against collective attacks for multi-photon source up to two photons on a noisy environment. It is also robust against impersonation attacks. The protocol may be implemented experimentally with the current spintronics technology on semiconductors.Comment: 7 pages, 7 EPS figure

    The Effects of d_{x^2-y^2}-d_{xy} Mixing on Vortex Structures and Magnetization

    Full text link
    The structure of an isolated single vortex and the vortex lattice, and the magnetization in a dd-wave superconductor are investigated within a phenomenological Ginzburg-Landau (GL) model including the mixture of the dx2y2d_{x^2-y^2}-wave and dxyd_{xy}-wave symmetry. The isolated single vortex structure in a week magnetic field is studied both numerically and asymptotically. Near the upper critical field Hc2H_{c2}, the vortex lattice structure and the magnetization are calculated analytically.Comment: 14 pages, REVTeX, 2 EPS figures, Journal of Physics: Condensed Matter (in press

    Capacitively coupled Josephson-junction chains: straight and slanted coupling

    Full text link
    Two chains of ultrasmall Josephson junctions, coupled capacitively with each other in the two different ways, straight and slanted coupling, are considered. As the coupling capacitance increases, regardless of the coupling scheme, the transport of particle-hole pairs in the system is found to drive the quantum-phase transition at zero temperature, which is a insulator-to-superfluid transition of the particle-hole pairs and belongs to the Berezinskii-Kosterlitz-Thouless universal class. The different underlying transport mechanisms for the two coupling schemes are reflected in the difference between the transition points.Comment: REVTeX + 7 EPS figures, detailed version of cond-mat/980219

    Quantum Dissipative Dynamics of the Magnetic Resonance Force Microscope in the Single-Spin Detection Limit

    Full text link
    We study a model of a magnetic resonance force microscope (MRFM) based on the cyclic adiabatic inversion technique as a high-resolution tool to detect single electron spins. We investigate the quantum dynamics of spin and cantilever in the presence of coupling to an environment. To obtain the reduced dynamics of the combined system of spin and cantilever, we use the Feynman-Vernon influence functional and get results valid at any temperature as well as at arbitrary system-bath coupling strength. We propose that the MRFM can be used as a quantum measurement device, i.e., not only to detect the modulus of the spin but also its direction

    Exact Calculation of the Vortex-Antivortex Interaction Energy in the Anisotropic 3D XY-model

    Full text link
    We have developed an exact method to calculate the vortex-antivortex interaction energy in the anisotropic 3D-XY model. For this calculation, dual transformation which is already known for the 2D XY-model was extended. We found an explicit form of this interaction energy as a function of the anisotropic ratio and the separation rr between the vortex and antivortex located on the same layer. The form of interaction energy is lnr\ln r at the small rr limi t but is proportional to rr at the opposite limit. This form of interaction energ y is consistent with the upper bound calculation using the variational method by Cataudella and Minnhagen.Comment: REVTeX 12 pages, In print for publication in Phys. Rev.

    SET based experiments for HTSC materials: II

    Full text link
    The cuprates seem to exhibit statistics, dimensionality and phase transitions in novel ways. The nature of excitations [i.e. quasiparticle or collective], spin-charge separation, stripes [static and dynamics], inhomogeneities, psuedogap, effect of impurity dopings [e.g. Zn, Ni] and any other phenomenon in these materials must be consistently understood. In this note we further discuss our original suggestion of using Single Electron Tunneling Transistor [SET] based experiments to understand the role of charge dynamics in these systems. Assuming that SET operates as an efficient charge detection system we can expect to understand the underlying physics of charge transport and charge fluctuations in these materials for a range of doping. Experiments such as these can be classed in a general sense as mesoscopic and nano characterization of cuprates and related materials. In principle such experiments can show if electron is fractionalized in cuprates as indicated by ARPES data. In contrast to flux trapping experiments SET based experiments are more direct in providing evidence about spin-charge separation. In addition a detailed picture of nano charge dynamics in cuprates may be obtained.Comment: 10 pages revtex plus four figures; ICMAT 2001 Conference Symposium P: P10-0
    corecore