17 research outputs found

    Nonlinear Coherence Effects in Transient-Absorption Ion Spectroscopy with Stochastic Extreme-Ultraviolet Free-Electron Laser Pulses

    No full text
    We demonstrate time-resolved nonlinear extreme-ultraviolet absorption spectroscopy on multiply charged ions, here applied to the doubly charged neon ion, driven by a phase-locked sequence of two intense free-electron laser pulses. Absorption signatures of resonance lines due to 2pp--3dd bound--bound transitions between the spin-orbit multiplets 3^3P0,1,2_{0,1,2} and 3^3D1,2,3_{1,2,3} of the transiently produced doubly charged Ne2+^{2+} ion are revealed, with time-dependent spectral changes over a time-delay range of (2.4±0.3) fs(2.4\pm0.3)\,\text{fs}. Furthermore, we observe 10-meV-scale spectral shifts of these resonances owing to the AC Stark effect. We use a time-dependent quantum model to explain the observations by an enhanced coupling of the ionic quantum states with the partially coherent free-electron-laser radiation when the phase-locked pump and probe pulses precisely overlap in time

    Case report: Interdisciplinary treatment of complex C1/C2 fractures in a patient with concomitant three-vessel coronary artery disease requiring bypass surgery

    Get PDF
    BackgroundAcute myocardial infarction (MI) frequently leads to consciousness disturbance following hemodynamic collapse. Therefore, MI can occur together with upper cervical spine trauma. Herein, we report the successful treatment of complex C1/C2 fractures in a patient with concomitant three-vessel coronary artery disease (CAD).Case presentationA 70-year-old patient presented in our emergency outpatient clinic after a hemodynamic collapse without neurological deficits or heart-related complaints. Computed tomography (CT) scan of the cervical spine revealed a dislocated odontoid fracture Anderson and D'Alonzo type II and an unstable Gehweiler type III injury (Jefferson's fracture). An intradiploic arachnoid cyst in the posterior wall of the posterior fossa was a coincident radiological finding. Furthermore, coronary angiography confirmed three-vessel CAD with high-grade coronary artery stenosis. Indication for upper cervical spine surgery and bypass surgery was given. An interdisciplinary team of neurosurgeons, cardiothoracic surgeons and anesthesiologists evaluated the patient's case to develop the most suitable therapy concept and alternative strategies. Finally, in first step, C1-C2 fusion was performed by Harms technique under general anesthesia with x-ray guidance, spinal neuronavigation, Doppler ultrasound and cardiopulmonary monitoring. Cardiothoracic surgeons were on standby. One month later bypass surgery was performed uneventfully. Follow-up CT scan of cervical spine revealed intraosseous screw positioning and beginning fusion of the fractures. The patient did not develop neurological deficits and recovered completely from both surgeries.ConclusionsTreating complex C1/C2 fractures with concomitant severe CAD requiring treatment is challenging and carries a high risk of complications. To our knowledge, the literature does not provide any guidelines regarding therapy of this constellation. To receive upper cervical spine stability and to prevent both, spinal cord injury and cardiovascular complications, an individual approach is required. Interdisciplinary cooperation to determine optimal therapeutic algorithms is needed

    Direct manipulation of atomic excitation with intense extreme-ultraviolet laser fields

    No full text
    The coherent excitation and manipulation of a two-level system with ultrashort intense extreme-ultraviolet laser fields is investigated theoretically, based on numerically solving the time-dependent Schr??dinger equation. We are particularly interested in the dynamical phase excursion of the energy states over the course of the interaction and the resulting spectral modifications. Fitting the absorption line shapes with the Fano profile quantifies the asymmetry parameter and the corresponding dipole phase offset, capturing the phase difference of the state coefficients after the interaction. Nonperturbative analytical calculations using rectangular driving pulses are employed, yielding physical insights into the dependence of the dipole phase shift on the external field. The validity of the formulas is validated by comparing their predictions with numerical results, which proves to be robust against the variation of laser parameters. The present investigation of strong-field dressing effects complements recent attosecond transient absorption studies assuming weak excitation, and marks a ubiquitous phenomenon that should be generally considered for the interaction of matter with intense laser fields

    Differential Measurement of Electron Ejection after Two-Photon Two-Electron Excitation of Helium

    No full text
    We report the measurement of the photoelectron angular distribution of two-photon single-ionization near the 2p22p^2 1De^1D^e double-excitation resonance in helium, benchmarking the fundamental nonlinear interaction of two photons with two correlated electrons. This observation is enabled by the unique combination of intense extreme ultraviolet pulses, delivered at the high-repetition-rate free-electron laser in Hamburg (FLASH), ionizing a jet of cryogenically cooled helium atoms in a reaction microscope. The spectral structure of the intense self-amplified spontaneous emission free-electron laser pulses has been resolved on a single-shot level to allow for post selection of pulses, leading to an enhanced spectral resolution, and introducing a new experimental method. The measured angular distribution is directly compared to state-of-the-art theory based on multichannel quantum defect theory and the streamlined RR-matrix method. These results and experimental methodology open a promising route for exploring fundamental interactions of few photons with few electrons in general
    corecore