34 research outputs found

    Short-chain fatty acid propionate protects from hypertensive cardiovascular damage

    Get PDF
    BACKGROUND: Arterial hypertension and its organ sequelae show characteristics of T cell mediated inflammatory diseases. Experimental anti-inflammatory therapies have been shown to ameliorate hypertensive end-organ damage. Recently, the CANTOS study targeting interleukin-1β demonstrated that anti-inflammatory therapy reduces cardiovascular risk. The gut microbiome plays pivotal role in immune homeostasis and cardiovascular health. Short-chain fatty acids (SCFA) are produced from dietary fiber by gut bacteria and affect host immune homeostasis. Here, we investigated effects of the SCFA propionate in two different mouse models of hypertensive cardiovascular damage. METHODS: To investigate the effect of SCFA on hypertensive cardiac damage and atherosclerosis, wild-type NMRI (WT) or ApoE(-/-) deficient mice received propionate (200mM) or control in the drinking water. To induce hypertension, WT mice were infused with Angiotensin (Ang)II (1.44mg/kg/d s.c.) for 14 days. To accelerate the development of atherosclerosis, ApoE(-/-) mice were infused with AngII (0.72mg/kg/d s.c.) for 28 days. Cardiac damage and atherosclerosis were assessed using histology, echocardiography, in vivo electrophysiology, immunofluorescence, and flow cytometry. Blood pressure was measured by radiotelemetry. Regulatory T cell (Treg) depletion using PC61 antibody was used to examine the mode of action of propionate. RESULTS: Propionate significantly attenuated cardiac hypertrophy, fibrosis, vascular dysfunction, and hypertension in both models. Susceptibility to cardiac ventricular arrhythmias was significantly reduced in propionate-treated AngII-infused WT mice. Aortic atherosclerotic lesion area was significantly decreased in propionate-treated ApoE(-/-). Systemic inflammation was mitigated by propionate treatment, quantified as a reduction in splenic effector memory T cell frequencies and splenic T helper 17 cells in both models, and a decrease in local cardiac immune cell infiltration in WT mice. Cardioprotective effects of propionate were abrogated in Treg-depleted AngII-infused mice, suggesting the effect is Treg-dependent. CONCLUSIONS: Our data emphasize an immune-modulatory role of SCFAs and their importance for cardiovascular health. The data suggest that lifestyle modifications leading to augmented SCFA production could be a beneficial non-pharmacological preventive strategy for patients with hypertensive cardiovascular disease

    Chronic blockade of angiotensin AT 1

    No full text

    Il diritto del lavoro tra libertà e sicurezza

    No full text
    Perturbation of circadian rhythmicity in mammals, either by environmental influences such as shiftwork or by genetic manipulation, has been associated with metabolic disturbance and the development of obesity and diabetes. Circadian clocks are based on transcriptional/translational feedback loops, comprising positive and negative components. Whereas the metabolic effects of deletion of the positive arm of the clock gene machinery, as in Clock- or Bmal1-deficient mice, have been well characterized, inactivation of Period genes (Per1-3) as components of the negative arm have more complex, sometimes contradictory effects on energy homeostasis. The CRYPTOCHROMEs are critical interaction partners of PERs, and simultaneous deletion of Cry1 and -2 results in behavioral and molecular circadian arrhythmicity. We show that, when challenged with a high-fat diet, Cry1/2(-/-) mice rapidly gain weight and surpass that of wild-type mice, despite displaying hypophagia. Transcript analysis of white adipose tissue reveals up-regulated expression of lipogenic genes, many of which are insulin targets. High-fat diet-induced hyperinsulinemia, as a result of potentiated insulin secretion, coupled with selective insulin sensitivity in adipose tissue of Cry1/2(-/-) mice, correlates with increased lipid uptake. Collectively, these data indicate that Cry deficiency results in an increased vulnerability to high-fat diet-induced obesity that might be mediated by increased insulin secretion and lipid storage in adipose tissues

    Gene therapy targeting the blood-brain barrier improves neurological symptoms in a model of genetic MCT8 deficiency.

    No full text
    A genetic deficiency of the solute carrier monocarboxylate transporter 8 (MCT8), termed Allan-Herndon-Dudley syndrome, is an important cause of X-linked intellectual and motor disability. MCT8 transports thyroid hormones across cell membranes. While thyroid hormone analogues improve peripheral changes of MCT8 deficiency, no treatment of the neurological symptoms is available so far. Therefore, we tested a gene replacement therapy in Mct8- and Oatp1c1-deficient mice as a well-established model of the disease. Here, we report that targeting brain endothelial cells for Mct8 expression by intravenously injecting the vector AAV-BR1-Mct8 increased tri-iodothyronine (T3) levels in the brain and ameliorated morphological and functional parameters associated with the disease. Importantly, the therapy resulted in a long-lasting improvement in motor coordination. Thus, the data support the concept that MCT8 mediates the transport of thyroid hormones into the brain and indicate that a readily accessible vascular target can help overcome the consequences of the severe disability associated with MCT8 deficiency

    Is LRP2 involved in leptin transport over the blood-brain barrier and development of obesity?

    Get PDF
    The mechanisms underlying the transport of leptin into the brain are still largely unclear. While the leptin receptor has been implicated in the transport process, recent evidence has suggested an additional role of LRP2 (megalin). To evaluate the function of LRP2 for leptin transport across the blood-brain barrier (BBB), we developed a novel leptin-luciferase fusion protein (pLG), which stimulated leptin signaling and was transported in an in vitro BBB model based on porcine endothelial cells. The LRP inhibitor RAP did not affect leptin transport, arguing against a role of LRP2. In line with this, the selective deletion of LRP2 in brain endothelial cells and epithelial cells of the choroid plexus did not influence bodyweight, body composition, food intake, or energy expenditure of mice. These findings suggest that LRP2 at the BBB is not involved in the transport of leptin into the brain, nor in the development of obesity as has previously been described
    corecore