623 research outputs found

    Experimental and simulation study results for video landmark acquisition and tracking technology

    Get PDF
    A synopsis of related Earth observation technology is provided and includes surface-feature tracking, generic feature classification and landmark identification, and navigation by multicolor correlation. With the advent of the Space Shuttle era, the NASA role takes on new significance in that one can now conceive of dedicated Earth resources missions. Space Shuttle also provides a unique test bed for evaluating advanced sensor technology like that described in this report. As a result of this type of rationale, the FILE OSTA-1 Shuttle experiment, which grew out of the Video Landmark Acquisition and Tracking (VILAT) activity, was developed and is described in this report along with the relevant tradeoffs. In addition, a synopsis of FILE computer simulation activity is included. This synopsis relates to future required capabilities such as landmark registration, reacquisition, and tracking

    IDENTIFICATION OF THE POP-UP ACCELERATION WAVEFORM SIGNAL: A CASE STUDY

    Get PDF
    The purpose of this case study was to assess the feasibility of using accelerometers to identify and analyse the acceleration waveform signals of the pop-up movement. An experienced male recreational surfer performed 10 dry-land pop-ups with accelerometers (1000 Hz) attached to the sacrum and lateral aspect of each shank. The waveform signals of the pop-up were successfully identified at each instrumentation site using a combination of acceleration and video data. Several movement events that occurred during the pop-up were also able to be detected within each of the mean resultant acceleration signals. These findings suggest that accelerometers can viably be used to detect and analyse the waveform signals of the pop-up. This provides initial evidence that accelerometers are a suitable tool for collecting kinematic data of surfing performances

    Stability of anhysteretic remanent magnetization in fine and coarse magnetite and maghemite particles

    Get PDF
    Further experiments have been performed to investigate the biasing-field dependency of alternating field demagnetization curves of anhysteretic remanent magnetization as a simple test for the domain state of magnetite and maghemite particles. The biasing-field dependency in fine-grained particles was opposite to that in coarse-grained particles. The experiments were conducted on well sized synthetic specimens in the single domain, pseudo-single domain and multi-domain grain size ranges. A single domain-like biasing-field dependency was observed in equidimensional particles up to 0.2µ mean grain size and up to 0.4µ elongated grains. Either the single domain/pseudo-single domain boundary lies above at least 0.2µ grain size or this field dependency test does not distinguish between single domain and pseudo-single domain states. A multidomainlike trend was observed in very coarse magnetite. The test may possibly distinguish the change from pseudo-single domain to multi-domain states. If both fine and coarse fractions are present a confusing overlap of the demagnetization curves occurs

    Study and simulation results for video landmark acquisition and tracking technology (Vilat-2)

    Get PDF
    The results of several investigations and hardware developments which supported new technology for Earth feature recognition and classification are described. Data analysis techniques and procedures were developed for processing the Feature Identification and Location Experiment (FILE) data. This experiment was flown in November 1981, on the second Shuttle flight and a second instrument, designed for aircraft flights, was flown over the United States in 1981. Ground tests were performed to provide the basis for designing a more advanced version (four spectral bands) of the FILE which would be capable of classifying clouds and snow (and possibly ice) as distinct features, in addition to the features classified in the Shuttle experiment (two spectral bands). The Shuttle instrument classifies water, bare land, vegetation, and clouds/snow/ice (grouped)

    A 3D radiative transfer framework: II. line transfer problems

    Get PDF
    Higher resolution telescopes as well as 3D numerical simulations will require the development of detailed 3D radiative transfer calculations. Building upon our previous work we extend our method to include both continuum and line transfer. We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in 3D static atmospheres. The scattering problem for line transfer is solved via means of an operator splitting (OS) technique. The formal solution is based on a long-characteristics method. The approximate Λ\Lambda operator is constructed considering nearest neighbors {\em exactly}. The code is parallelized over both wavelength and solid angle using the MPI library. We present the results of several test cases with different values of the thermalization parameter and two choices for the temperature structure. The results are directly compared to 1D spherical tests. With our current grid setup the interior resolution is much lower in 3D than in 1D, nevertheless the 3D results agree very well with the well-tested 1D calculations. We show that with relatively simple parallelization that the code scales to very large number of processors which is mandatory for practical applications. Advances in modern computers will make realistic 3D radiative transfer calculations possible in the near future. Our current code scales to very large numbers of processors, but requires larger memory per processor at high spatial resolution.Comment: A&A, in press, 9 pages, 9 Figures. Full resolution version available at ftp://phoenix.hs.uni-hamburg.de/preprints/3DRT_paper2.pd

    Impacts of mixing on foaming, methane production, stratification and microbial community in full-scale anaerobic co-digestion process

    Full text link
    © 2019 Elsevier Ltd This study investigated the impact of mixing on key factors including foaming, substrate stratification, methane production and microbial community in three full scale anaerobic digesters. Digester foaming was observed at one plant that co-digested sewage sludge and food waste, and was operated without mixing. The lack of mixing led to uneven distribution of total chemical oxygen demand (tCOD) and volatile solid (VS) as well as methane production within the digester. 16S rRNA gene-based community analysis clearly differentiated the microbial community from the top and bottom. By contrast, foaming and substrate stratification were not observed at the other two plants with internal circulation mixing. The abundance of methanogens (Methanomicrobia) at the top was about four times higher than at the bottom, correlating to much higher methane production from the top verified by ex-situ biomethane assay, causing foaming. This result is consistent with foaming potential assessment of digestate samples from the digester

    Earthquake networks based on similar activity patterns

    Full text link
    Earthquakes are a complex spatiotemporal phenomenon, the underlying mechanism for which is still not fully understood despite decades of research and analysis. We propose and develop a network approach to earthquake events. In this network, a node represents a spatial location while a link between two nodes represents similar activity patterns in the two different locations. The strength of a link is proportional to the strength of the cross-correlation in activities of two nodes joined by the link. We apply our network approach to a Japanese earthquake catalog spanning the 14-year period 1985-1998. We find strong links representing large correlations between patterns in locations separated by more than 1000 km, corroborating prior observations that earthquake interactions have no characteristic length scale. We find network characteristics not attributable to chance alone, including a large number of network links, high node assortativity, and strong stability over time.Comment: 8 pages text, 9 figures. Updated from previous versio

    Magnesium administration provokes motor unit survival, after sciatic nerve injury in neonatal rats

    Get PDF
    BACKGROUND: We examined the time course of the functional alterations in two types of muscles following sciatic nerve crush in neonatal rats and the neuroprotective effect of Mg(2+). METHODS: The nerve crush was performed on the 2(nd )postnatal day. MgSO(4)*7H(2)O was administered daily for two weeks. Animals were examined for the contractile properties and for the number of motor units of extensor digitorum longus and soleus muscles at three postnatal stages and adulthood. Four experimental groups were included in this study: i) controls, ii) axotomized rats, iii) magnesium treated controls and iv) axotomized and Mg(2+)-treated rats. RESULTS: Axotomy resulted in 20% MU survival in EDL and 50% in soleus. In contrast, magnesium treatment resulted in a significant motor unit survival (40% survival in EDL and 80% in soleus). The neuroprotective effects of Mg(2+ )were evident immediately after the Mg(2+)-treatment. Immature EDL and soleus muscles were slow and fatigueable. Soleus gradually became fatigue resistant, whereas, after axotomy, soleus remained fatigueable up to adulthood. EDL gradually became fastcontracting. Tetanic contraction in axotomized EDL was just 3,3% of the control side, compared to 15,2% in Mg(2+)-treated adult rats. The same parameter for axotomized soleus was 12% compared to 97% in Mg(2+)-treated adult rats. CONCLUSIONS: These results demonstrate that motoneuron death occurs mostly within two weeks of axotomy. Magnesium administration rescues motoneurons and increases the number of motor units surviving into adulthood. Fast and slow muscles respond differently to axotomy and to subsequent Mg(2+ )treatment in vivo

    Mechanism, dynamics, and biological existence of multistability in a large class of bursting neurons

    Full text link
    Multistability, the coexistence of multiple attractors in a dynamical system, is explored in bursting nerve cells. A modeling study is performed to show that a large class of bursting systems, as defined by a shared topology when represented as dynamical systems, is inherently suited to support multistability. We derive the bifurcation structure and parametric trends leading to multistability in these systems. Evidence for the existence of multirhythmic behavior in neurons of the aquatic mollusc Aplysia californica that is consistent with our proposed mechanism is presented. Although these experimental results are preliminary, they indicate that single neurons may be capable of dynamically storing information for longer time scales than typically attributed to nonsynaptic mechanisms.Comment: 24 pages, 8 figure

    Approach to canine paroxysmal dyskinesias

    Get PDF
    The term ‘paroxysmal dyskinesia’ (PD) describes a manifestation of involuntary movement or muscle tone, which by definition is episodic in nature and self-limiting. The PDs remain poorly understood and frequently under-recognised conditions in veterinary patients. The purpose of this article is to review the basic classification and principles of recognition and diagnosis of PDs. This article introduces some of the breed-specific PDs, as well as the treatment/management options available and expected outcomes
    corecore