987 research outputs found

    Weak in Space, Log in Time Improvement of the Lady{\v{z}}enskaja-Prodi-Serrin Criteria

    Full text link
    In this article we present a Lady{\v{z}}enskaja-Prodi-Serrin Criteria for regularity of solutions for the Navier-Stokes equation in three dimensions which incorporates weak LpL^p norms in the space variables and log improvement in the time variable.Comment: 14 pages, to appea

    Global wellposedness for a certain class of large initial data for the 3D Navier-Stokes Equations

    Full text link
    In this article, we consider a special class of initial data to the 3D Navier-Stokes equations on the torus, in which there is a certain degree of orthogonality in the components of the initial data. We showed that, under such conditions, the Navier-Stokes equations are globally wellposed. We also showed that there exists large initial data, in the sense of the critical norm B∞,∞−1B^{-1}_{\infty,\infty} that satisfies the conditions that we considered.Comment: 13 pages, updated references for v

    A geometric condition implying energy equality for solutions of 3D Navier-Stokes equation

    Full text link
    We prove that every weak solution uu to the 3D Navier-Stokes equation that belongs to the class L3L9/2L^3L^{9/2} and \n u belongs to L3L9/5L^3L^{9/5} localy away from a 1/2-H\"{o}lder continuous curve in time satisfies the generalized energy equality. In particular every such solution is suitable.Comment: 10 page

    The "Symplectic Camel Principle" and Semiclassical Mechanics

    Full text link
    Gromov's nonsqueezing theorem, aka the property of the symplectic camel, leads to a very simple semiclassical quantiuzation scheme by imposing that the only "physically admissible" semiclassical phase space states are those whose symplectic capacity (in a sense to be precised) is nh + (1/2)h where h is Planck's constant. We the construct semiclassical waveforms on Lagrangian submanifolds using the properties of the Leray-Maslov index, which allows us to define the argument of the square root of a de Rham form.Comment: no figures. to appear in J. Phys. Math A. (2002

    Asymptotic description of solutions of the exterior Navier Stokes problem in a half space

    Full text link
    We consider the problem of a body moving within an incompressible fluid at constant speed parallel to a wall, in an otherwise unbounded domain. This situation is modeled by the incompressible Navier-Stokes equations in an exterior domain in a half space, with appropriate boundary conditions on the wall, the body, and at infinity. We focus on the case where the size of the body is small. We prove in a very general setup that the solution of this problem is unique and we compute a sharp decay rate of the solution far from the moving body and the wall

    Geometrical Hyperbolic Systems for General Relativity and Gauge Theories

    Full text link
    The evolution equations of Einstein's theory and of Maxwell's theory---the latter used as a simple model to illustrate the former--- are written in gauge covariant first order symmetric hyperbolic form with only physically natural characteristic directions and speeds for the dynamical variables. Quantities representing gauge degrees of freedom [the spatial shift vector βi(t,xj)\beta^{i}(t,x^{j}) and the spatial scalar potential ϕ(t,xj)\phi(t,x^{j}), respectively] are not among the dynamical variables: the gauge and the physical quantities in the evolution equations are effectively decoupled. For example, the gauge quantities could be obtained as functions of (t,xj)(t,x^{j}) from subsidiary equations that are not part of the evolution equations. Propagation of certain (``radiative'') dynamical variables along the physical light cone is gauge invariant while the remaining dynamical variables are dragged along the axes orthogonal to the spacelike time slices by the propagating variables. We obtain these results by (1)(1) taking a further time derivative of the equation of motion of the canonical momentum, and (2)(2) adding a covariant spatial derivative of the momentum constraints of general relativity (Lagrange multiplier βi\beta^{i}) or of the Gauss's law constraint of electromagnetism (Lagrange multiplier ϕ\phi). General relativity also requires a harmonic time slicing condition or a specific generalization of it that brings in the Hamiltonian constraint when we pass to first order symmetric form. The dynamically propagating gravity fields straightforwardly determine the ``electric'' or ``tidal'' parts of the Riemann tensor.Comment: 24 pages, latex, no figure

    Isotopic and velocity distributions of Bi produced in charge-pickup reactions of 208Pb at 1 A GeV

    Full text link
    Isotopically resolved cross sections and velocity distributions have been measured in charge-pickup reactions of 1 A GeV 208Pb with proton, deuterium and titanium target. The total and partial charge-pickup cross sections in the reactions 208Pb + 1H and 208Pb + 2H are measured to be the same in the limits of the error bars. A weak increase in the total charge-pickup cross section is seen in the reaction of 208Pb with the titanium target. The measured velocity distributions show different contributions - quasi-elastic scattering and Delta-resonance excitation - to the charge-pickup production. Data on total and partial charge-pickup cross sections from these three reactions are compared with other existing data and also with model calculations based on the coupling of different intra-nuclear cascade codes and an evaporation code.Comment: 20 pages, 12 figures, background information on http://www-w2k.gsi.de/kschmidt

    Constraints and evolution in cosmology

    Get PDF
    We review some old and new results about strict and non strict hyperbolic formulations of the Einstein equations.Comment: To appear in the proceedings of the first Aegean summer school in General Relativity, S. Cotsakis ed. Springer Lecture Notes in Physic
    • …
    corecore